Suppr超能文献

用于区分绿色阿拉比卡咖啡豆和罗布斯塔咖啡豆的多变量分类模型在实验室近红外光谱仪和过程近红外光谱仪之间的转移。

Transfer of multivariate classification models between laboratory and process near-infrared spectrometers for the discrimination of green Arabica and Robusta coffee beans.

作者信息

Myles Anthony J, Zimmerman Tyler A, Brown Steven D

机构信息

Laboratory for Chemometrics, Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA.

出版信息

Appl Spectrosc. 2006 Oct;60(10):1198-203. doi: 10.1366/000370206778664581.

Abstract

Analogous to the situation found in calibration, a classification model constructed from spectra measured on one instrument may not be valid for prediction of class from spectra measured on a second instrument. In this paper, the transfer of multivariate classification models between laboratory and process near-infrared spectrometers is investigated for the discrimination of whole, green Coffea arabica (Arabica) and Coffea canefora (Robusta) coffee beans. A modified version of slope/bias correction, orthogonal signal correction trained on a vector of discrete class identities, and model updating were found to perform well in the preprocessing of data to permit the transfer of a classification model developed on data from one instrument to be used on another instrument. These techniques permitted development of robust models for the discrimination of green coffee beans on both spectrometers and resulted in misclassification errors for the transfer process in the range of 5-10%.

摘要

类似于在校准中发现的情况,从一台仪器上测量的光谱构建的分类模型可能不适用于根据另一台仪器上测量的光谱来预测类别。本文研究了多元分类模型在实验室近红外光谱仪和过程近红外光谱仪之间的转移,用于鉴别完整的绿色阿拉比卡咖啡豆(Arabica)和卡内弗拉咖啡豆(Robusta)。发现一种经过修改的斜率/偏差校正、基于离散类别标识向量训练的正交信号校正以及模型更新,在数据预处理中表现良好,能够使基于一台仪器数据开发的分类模型转移到另一台仪器上使用。这些技术使得能够在两台光谱仪上开发出用于鉴别生咖啡豆的稳健模型,并且转移过程中的误分类误差在5%至10%的范围内。

相似文献

3
Quantification of Coffea arabica and Coffea canephora var. robusta in roasted and ground coffee blends.
Talanta. 2013 Mar 15;106:169-73. doi: 10.1016/j.talanta.2012.12.003. Epub 2012 Dec 23.
5
Evaluation of green coffee beans quality using near infrared spectroscopy: a quantitative approach.
Food Chem. 2012 Dec 1;135(3):1828-35. doi: 10.1016/j.foodchem.2012.06.059. Epub 2012 Jul 1.
8
Spectral simulation methodology for calibration transfer of near-infrared spectra.
Appl Spectrosc. 2007 Apr;61(4):406-13. doi: 10.1366/000370207780466280.

引用本文的文献

1
The use of multispectral imaging for the discrimination of Arabica and Robusta coffee beans.
Food Chem X. 2022 May 6;14:100325. doi: 10.1016/j.fochx.2022.100325. eCollection 2022 Jun 30.
2
Investigation of Direct Model Transferability Using Miniature Near-Infrared Spectrometers.
Molecules. 2019 May 24;24(10):1997. doi: 10.3390/molecules24101997.
3
Rapid prediction of single green coffee bean moisture and lipid content by hyperspectral imaging.
J Food Eng. 2018 Jun;227:18-29. doi: 10.1016/j.jfoodeng.2018.01.009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验