Suppr超能文献

单核苷酸多态性(SNP)子集的单倍型计算:“全局方法”的优势

Computation of haplotypes on SNPs subsets: advantage of the "global method".

作者信息

Coulonges Cédric, Delaneau Olivier, Girard Manon, Do Hervé, Adkins Ronald, Spadoni Jean-Louis, Zagury Jean-François

机构信息

Equipe génomique, bioinformatique et pathologies du système immunitaire, INSERM U736, 15 rue de l'Ecole de Médecine, 75006 Paris, France.

出版信息

BMC Genet. 2006 Oct 26;7:50. doi: 10.1186/1471-2156-7-50.

Abstract

BACKGROUND

Genetic association studies aim at finding correlations between a disease state and genetic variations such as SNPs or combinations of SNPs, termed haplotypes. Some haplotypes have a particular biological meaning such as the ones derived from SNPs located in the promoters, or the ones derived from non synonymous SNPs. All these haplotypes are "subhaplotypes" because they refer only to a part of the SNPs found in the gene. Until now, subhaplotypes were directly computed from the very SNPs chosen to constitute them, without taking into account the rest of the information corresponding to the other SNPs located in the gene. In the present work, we describe an alternative approach, called the "global method", which takes into account all the SNPs known in the region and compare the efficacy of the two "direct" and "global" methods.

RESULTS

We used empirical haplotypes data sets from the GH1 promoter and the APOE gene, and 10 simulated datasets, and randomly introduced in them missing information (from 0% up to 20%) to compare the 2 methods. For each method, we used the PHASE haplotyping software since it was described to be the best. We showed that the use of the "global method" for subhaplotyping leads always to a better error rate than the classical direct haplotyping. The advantage provided by this alternative method increases with the percentage of missing genotyping data (diminution of the average error rate from 25% to less than 10%). We applied the global method software on the GRIV cohort for AIDS genetic associations and some associations previously identified through direct subhaplotyping were found to be erroneous.

CONCLUSION

The global method for subhaplotyping can reduce, sometimes dramatically, the error rate on patient resolutions and haplotypes frequencies. One should thus use this method in order to minimise the risk of a false interpretation in genetic studies involving subhaplotypes. In practice the global method is always more efficient than the direct method, but a combination method taking into account the level of missing information in each subject appears to be even more interesting when the level of missing information becomes larger (>10%).

摘要

背景

基因关联研究旨在寻找疾病状态与基因变异(如单核苷酸多态性(SNP)或SNP组合,即单倍型)之间的相关性。一些单倍型具有特定的生物学意义,例如源自启动子区域SNP的单倍型,或源自非同义SNP的单倍型。所有这些单倍型都是“亚单倍型”,因为它们仅涉及基因中发现的部分SNP。到目前为止,亚单倍型是直接从选择构成它们的SNP计算得出的,而没有考虑与基因中其他SNP对应的其余信息。在本研究中,我们描述了一种替代方法,称为“全局方法”,该方法考虑了该区域中已知的所有SNP,并比较了“直接”和“全局”两种方法的有效性。

结果

我们使用了来自GH1启动子和APOE基因的经验性单倍型数据集以及10个模拟数据集,并在其中随机引入缺失信息(从0%到20%)以比较这两种方法。对于每种方法,我们使用PHASE单倍型分型软件,因为它被认为是最好的。我们表明,使用“全局方法”进行亚单倍型分型总是比传统的直接单倍型分型产生更好的错误率。这种替代方法的优势随着基因分型数据缺失百分比的增加而增加(平均错误率从25%降至不到10%)。我们将全局方法软件应用于GRIV艾滋病基因关联队列,发现一些先前通过直接亚单倍型分型确定的关联是错误的。

结论

亚单倍型分型的全局方法有时可以显著降低患者分辨率和单倍型频率的错误率。因此,在涉及亚单倍型的基因研究中,应使用此方法以尽量减少错误解释的风险。实际上,全局方法总是比直接方法更有效,但当缺失信息水平变得更大(>10%)时,考虑每个受试者缺失信息水平的组合方法似乎更有意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/627e/1636337/cc447f089d0a/1471-2156-7-50-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验