Suppr超能文献

利用蝴蝶群落的存在/缺失数据构建物候模型。

Building phenological models from presence/absence data for a butterfly fauna.

作者信息

Thorne James H, O'Brien Joshua, Forister Matthew L, Shapiro Arthur M

机构信息

Department of Environmental Science and Policy, University of California, Davis 95616, USA.

出版信息

Ecol Appl. 2006 Oct;16(5):1842-53. doi: 10.1890/1051-0761(2006)016[1842:bpmfad]2.0.co;2.

Abstract

Species phenology is increasingly being used to explore the effects of climate change and other environmental stressors. Long-term monitoring data sets are essential for understanding both patterns manifest by individual species and more complex patterns evident at the community level. This study used records of 78 butterfly species observed on 626 days across 27 years at a site in northern California, USA, to build quadratic logistic regression models of the observation probability of each species for each day of the year. Daily species probabilities were summed to develop a potential aggregate species richness (PASR) model, indicating expected daily species richness. Daily positive and negative contributions to PASR were calculated, which can be used to target optimum sampling time frames. Residuals to PASR indicate a rate of decline of 0.12 species per year over the course of the study. When PASR was calculated for wet and dry years, wet years were found to delay group phenology by up to 17 days and reduce the maximum annual expected species from 32.36 to 30. Three tests to determine how well the PASR model reflected the butterfly fauna dynamics were all positive: We correlated probabilities developed with species presence/absence data to observed abundance by species, tested species' predicted phenological patterns against known biological characteristics, and compared the PASR curve to a spline-fitted curve calculated from the original species richness observations. Modeling individual species' flight windows was possible from presence/absence data, an approach that could be used on other similar records for butterfly communities with seasonal phenologies, and for common species with far fewer dates than used here. It also provided a method to assess sample frequency guidelines for other butterfly monitoring programs.

摘要

物种物候学越来越多地被用于探究气候变化和其他环境压力源的影响。长期监测数据集对于理解单个物种所呈现的模式以及群落层面更复杂的模式至关重要。本研究利用在美国加利福尼亚州北部一个地点27年间626天观察到的78种蝴蝶的记录,构建了每年中每一天每种蝴蝶观察概率的二次逻辑回归模型。将每日物种概率相加,以建立一个潜在的总物种丰富度(PASR)模型,该模型可表明每日预期的物种丰富度。计算了对PASR的每日正负贡献,这可用于确定最佳采样时间框架。PASR的残差表明在研究过程中每年有0.12个物种的下降速率。当计算湿润年份和干旱年份的PASR时,发现湿润年份会使群体物候推迟多达17天,并将年度最大预期物种数从32.36减少到30。三项用于确定PASR模型反映蝴蝶动物群动态程度的测试结果均为正向:我们将根据物种存在/不存在数据得出的概率与按物种观察到的丰度进行关联,对照已知生物学特征测试物种预测的物候模式,并将PASR曲线与根据原始物种丰富度观测值计算的样条拟合曲线进行比较。利用存在/不存在数据能够模拟单个物种的飞行窗口,这种方法可用于具有季节性物候的蝴蝶群落的其他类似记录,以及用于日期比此处使用的少得多的常见物种。它还提供了一种方法来评估其他蝴蝶监测项目的样本频率指南。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验