Suppr超能文献

通过流动聚焦装置形成的脂质包被单分散微泡的长期稳定性。

Long-term stability by lipid coating monodisperse microbubbles formed by a flow-focusing device.

作者信息

Talu Esra, Lozano Monica M, Powell Robert L, Dayton Paul A, Longo Marjorie L

机构信息

Department of Chemical Engineering & Materials Science and Department of Biomedical Engineering, University of California, Davis, California 95616, USA.

出版信息

Langmuir. 2006 Nov 7;22(23):9487-90. doi: 10.1021/la062095+.

Abstract

In this letter, the long-term stabilization of monodisperse microbubbles produced by flow focusing is demonstrated using lipid encapsulation. Fluorescence microscopy, high-speed camera imaging, and particle size analysis were used to investigate the roles of lipid phase behavior, dissolution, Ostwald ripening, and coalescence in the stability of microbubbles formed by flow focusing. It was found that these behaviors were controlled through compositional changes with respect to lipid, emulsifier, and viscosity agents. Microbubbles coated with lipid and PEG emulsifier in a viscous solution were found to contain an extremely narrow size distribution (diameter(av) = 51 microm, standard deviation = 4 microm), which was maintained for up to several months.

摘要

在这封信中,展示了使用脂质封装实现流动聚焦产生的单分散微泡的长期稳定性。利用荧光显微镜、高速相机成像和粒度分析来研究脂质相行为、溶解、奥斯特瓦尔德熟化和聚结在流动聚焦形成的微泡稳定性中的作用。结果发现,这些行为可通过脂质、乳化剂和增稠剂的成分变化来控制。发现在粘性溶液中涂有脂质和聚乙二醇乳化剂的微泡具有极窄的尺寸分布(平均直径 = 51微米,标准偏差 = 4微米),这种分布可保持长达数月。

相似文献

2
Post-Formation Shrinkage and Stabilization of Microfluidic Bubbles in Lipid Solution.
Langmuir. 2016 Mar 1;32(8):1939-46. doi: 10.1021/acs.langmuir.5b03948. Epub 2016 Feb 18.
3
Stability and rheological behavior of concentrated monodisperse food emulsifier coated microbubble suspensions.
J Colloid Interface Sci. 2008 Nov 1;327(1):204-10. doi: 10.1016/j.jcis.2008.07.047. Epub 2008 Aug 5.
4
Influence of Pluronic F68 on Size Stability and Acoustic Behavior of Monodisperse Phospholipid-Coated Microbubbles Produced at Room Temperature.
ACS Appl Mater Interfaces. 2025 Feb 12;17(6):8976-8986. doi: 10.1021/acsami.4c18844. Epub 2025 Feb 3.
5
Maintaining monodispersity in a microbubble population formed by flow-focusing.
Langmuir. 2008 Mar 4;24(5):1745-9. doi: 10.1021/la703065v. Epub 2008 Jan 19.
6
Lipid monolayer collapse and microbubble stability.
Adv Colloid Interface Sci. 2012 Nov 15;183-184:82-99. doi: 10.1016/j.cis.2012.08.005. Epub 2012 Aug 21.
7
Surface phase behavior and microstructure of lipid/PEG-emulsifier monolayer-coated microbubbles.
Colloids Surf B Biointerfaces. 2004 Jun 1;35(3-4):209-23. doi: 10.1016/j.colsurfb.2004.03.007.
9
Collapse and shedding transitions in binary lipid monolayers coating microbubbles.
Langmuir. 2006 Mar 28;22(7):2993-9. doi: 10.1021/la0530337.
10
Controlling the stability of monodisperse phospholipid-coated microbubbles by tuning their buckling pressure.
J Colloid Interface Sci. 2025 May;685:449-457. doi: 10.1016/j.jcis.2025.01.114. Epub 2025 Jan 16.

引用本文的文献

1
Ultrasound-generated bubbles enhance osteogenic differentiation of mesenchymal stromal cells in composite collagen hydrogels.
Bioact Mater. 2024 Sep 20;43:82-97. doi: 10.1016/j.bioactmat.2024.09.018. eCollection 2025 Jan.
2
Aptamer-Functionalized Microbubbles Targeted to P-selectin for Ultrasound Molecular Imaging of Murine Bowel Inflammation.
Mol Imaging Biol. 2023 Apr;25(2):283-293. doi: 10.1007/s11307-022-01755-9. Epub 2022 Jul 18.
3
Biomedical nanobubbles and opportunities for microfluidics.
RSC Adv. 2021 Oct 5;11(52):32750-32774. doi: 10.1039/d1ra04890b. eCollection 2021 Oct 4.
5
Engineering Theranostic Microbubbles Using Microfluidics for Ultrasound Imaging and Therapy: A Review.
Ultrasound Med Biol. 2018 Dec;44(12):2441-2460. doi: 10.1016/j.ultrasmedbio.2018.07.026. Epub 2018 Sep 19.
6
Hemodynamic Effects of Lipid-Based Oxygen Microbubbles via Rapid Intravenous Injection in Rodents.
Pharm Res. 2017 Oct;34(10):2156-2162. doi: 10.1007/s11095-017-2222-3. Epub 2017 Jul 6.
7
Oxygen delivery using engineered microparticles.
Proc Natl Acad Sci U S A. 2016 Nov 1;113(44):12380-12385. doi: 10.1073/pnas.1608438113. Epub 2016 Oct 17.
8
Ultrasound-mediated oncolytic virus delivery and uptake for increased therapeutic efficacy: state of art.
Oncolytic Virother. 2015 Nov 25;4:193-205. doi: 10.2147/OV.S66097. eCollection 2015.
9
A micrometer-sized ultrasound contrast agent with nanometer-scale polygonal patterning surfaces.
J Med Ultrason (2001). 2014 Oct;41(4):421-9. doi: 10.1007/s10396-014-0543-y. Epub 2014 May 27.
10
Microfluidic manufacture of rt-PA -loaded echogenic liposomes.
Biomed Microdevices. 2016 Jun;18(3):48. doi: 10.1007/s10544-016-0072-0.

本文引用的文献

2
Surface phase behavior and microstructure of lipid/PEG-emulsifier monolayer-coated microbubbles.
Colloids Surf B Biointerfaces. 2004 Jun 1;35(3-4):209-23. doi: 10.1016/j.colsurfb.2004.03.007.
3
Therapeutic applications of lipid-coated microbubbles.
Adv Drug Deliv Rev. 2004 May 7;56(9):1291-314. doi: 10.1016/j.addr.2003.12.006.
4
Perfectly monodisperse microbubbling by capillary flow focusing: an alternate physical description and universal scaling.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Feb;69(2 Pt 2):027301. doi: 10.1103/PhysRevE.69.027301. Epub 2004 Feb 27.
5
Targeted imaging using ultrasound.
J Magn Reson Imaging. 2002 Oct;16(4):362-77. doi: 10.1002/jmri.10173.
6
Perfectly monodisperse microbubbling by capillary flow focusing.
Phys Rev Lett. 2001 Dec 31;87(27 Pt 1):274501. doi: 10.1103/PhysRevLett.87.274501. Epub 2001 Dec 11.
7
Targeted delivery of gas-filled microspheres, contrast agents for ultrasound imaging.
Adv Drug Deliv Rev. 1999 Apr 5;37(1-3):139-157. doi: 10.1016/s0169-409x(98)00104-5.
8
Advances in microbubble technology.
Coron Artery Dis. 2000 May;11(3):211-9. doi: 10.1097/00019501-200005000-00003.
9
Effect of Surfactants on the Film Drainage.
J Colloid Interface Sci. 1999 Mar 15;211(2):291-303. doi: 10.1006/jcis.1998.5973.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验