Sherratt Jonathan A, Lord Gabriel J
Department of Mathematics and Maxwell Institute, Heriot-Watt University, Edinburgh EH14 4AS, UK.
Theor Popul Biol. 2007 Feb;71(1):1-11. doi: 10.1016/j.tpb.2006.07.009. Epub 2006 Sep 16.
In many semi-arid environments, vegetation is self-organised into spatial patterns. The most striking examples of this are on gentle slopes, where striped patterns are typical, running parallel to the contours. Previously, Klausmeier [1999. Regular and irregular patterns in semiarid vegetation. Science 284, 1826-1828.] has proposed a model for vegetation stripes based on competition for water. Here, we present a detailed study of the patterned solutions in the full nonlinear model, using numerical bifurcation analysis of both the pattern odes and the model pdes. We show that patterns exist for a wide range of rainfall levels, and in particular for much lower rainfall than have been considered by previous authors. Moreover, we show that for many rainfall levels, patterns with a variety of different wavelengths are stable, with mode selection dependent on initial conditions. This raises the possibility of hysteresis, and in numerical solutions of the model we show that pattern selection depends on rainfall history in a relatively simple way.
在许多半干旱环境中,植被会自行组织成空间格局。其中最显著的例子出现在缓坡上,那里典型的条纹状格局与等高线平行。此前,克劳斯迈尔[1999年。半干旱植被中的规则和不规则格局。《科学》284卷,第1826 - 1828页。]基于对水的竞争提出了一个植被条纹模型。在此,我们使用模式常微分方程和模型偏微分方程的数值分岔分析,对完整非线性模型中的模式解进行了详细研究。我们表明,在很宽的降雨水平范围内都存在格局,特别是在比先前作者所考虑的降雨水平低得多的情况下。此外,我们还表明,对于许多降雨水平,具有各种不同波长的格局是稳定的,模式选择取决于初始条件。这增加了滞后现象的可能性,并且在模型的数值解中我们表明,模式选择以一种相对简单的方式取决于降雨历史。