Suppr超能文献

一个可调节的吸引子构成了酵母呼吸动力学的基础。

A tuneable attractor underlies yeast respiratory dynamics.

作者信息

Murray Douglas B, Lloyd David

机构信息

The Systems Biology Institute, 953 Shinanomachi Research Park, Keio University School of Medicine, 35 Shinanomachi, Shimjuku-ku, Tokyo 160-852, Japan.

出版信息

Biosystems. 2007 Jul-Aug;90(1):287-94. doi: 10.1016/j.biosystems.2006.09.032. Epub 2006 Sep 16.

Abstract

Our understanding of the molecular structure and function in the budding yeast, Saccharomyces cerevisiae, surpasses that of all other eukaryotic cells. However, the fundamental properties of the complex processes and their control systems have been difficult to reconstruct from detailed dissection of their molecular components. Spontaneous oscillatory dynamics observed in self-synchronized continuous cultures is pervasive, involves much of the cellular network, and provides unique insights into integrative cell physiology. Here, in non-invasive experiments in vivo, we exploit these oscillatory dynamics to analyse the global timing of the cellular network to show the presence of a low-order chaotic component. Although robust to a wide range of environmental perturbations, the system responds and reacts to the imposition of harsh environmental conditions, in this case low pH, by dynamic re-organization of respiration, and this feeds upwards to affect cell division. These complex dynamics can be represented by a tuneable attractor that orchestrates cellular complexity and coherence to the environment.

摘要

我们对出芽酵母(酿酒酵母)分子结构和功能的了解超过了所有其他真核细胞。然而,复杂过程及其控制系统的基本特性很难通过对其分子成分的详细剖析来重构。在自同步连续培养中观察到的自发振荡动力学普遍存在,涉及细胞网络的大部分内容,并为整合细胞生理学提供了独特的见解。在这里,在体内非侵入性实验中,我们利用这些振荡动力学来分析细胞网络的全局时间,以显示低阶混沌成分的存在。尽管该系统对广泛的环境扰动具有鲁棒性,但在这种情况下,即低pH值,它会通过呼吸的动态重组对恶劣环境条件的施加做出反应,并且这会向上反馈以影响细胞分裂。这些复杂的动力学可以由一个可调节的吸引子来表示,该吸引子协调细胞的复杂性和与环境的协调性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验