Suppr超能文献

Morphological substrate of the catecholaminergic input of the vasopressin neuronal system in humans.

作者信息

Dudás B, Semeniken K R, Merchenthaler I

机构信息

Neuroendocrine Organization Laboratory, Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA.

出版信息

J Neuroendocrinol. 2006 Dec;18(12):895-901. doi: 10.1111/j.1365-2826.2006.01487.x.

Abstract

It has been postulated that the stress response is associated with water balance via regulating vasopressin release. Nausea, surgical stress and insulin-induced hypoglycaemia were shown to stimulate vasopressin secretion in humans. Increased vasopressin release in turn induces water resorption through the kidneys. Although the mechanism of the stress-mediated vasopressin release is not entirely understood, it is generally accepted that catecholamines play a crucial role in influencing water balance by modulating the secretion of vasopressin. However, the morphological substrate of this modulation has not yet been established. The present study utilised double-label immunohistochemistry to reveal putative juxtapositions between tyrosine hydroxylase (TH)-immunoreactive (IR) catecholaminergic system and the vasopressin systems in the human hypothalamus. In the paraventricular and supraoptic nuclei, numerous vasopressin-IR neurones received TH-IR axon varicosities. Analysis of these juxtapositions with high magnification combined with oil immersion did not reveal any gaps between the contacted elements. In conclusion, the intimate associations between the TH-IR and vasopressin-IR elements may be functional synapses and may represent the morphological basis of vasopressin release modulated by stressors. Because certain vasopressin-IR perikarya receive no detectable TH innervations, it is possible that additional mechanisms may participate in the stress-influenced vasopressin release.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验