Suppr超能文献

正常老年人类大脑在解剖学和功能上不同区域的基因表达谱。

Gene expression profiles in anatomically and functionally distinct regions of the normal aged human brain.

作者信息

Liang Winnie S, Dunckley Travis, Beach Thomas G, Grover Andrew, Mastroeni Diego, Walker Douglas G, Caselli Richard J, Kukull Walter A, McKeel Daniel, Morris John C, Hulette Christine, Schmechel Donald, Alexander Gene E, Reiman Eric M, Rogers Joseph, Stephan Dietrich A

机构信息

Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA.

出版信息

Physiol Genomics. 2007 Feb 12;28(3):311-22. doi: 10.1152/physiolgenomics.00208.2006. Epub 2006 Oct 31.

Abstract

In this article, we have characterized and compared gene expression profiles from laser capture microdissected neurons in six functionally and anatomically distinct regions from clinically and histopathologically normal aged human brains. These regions, which are also known to be differentially vulnerable to the histopathological and metabolic features of Alzheimer's disease (AD), include the entorhinal cortex and hippocampus (limbic and paralimbic areas vulnerable to early neurofibrillary tangle pathology in AD), posterior cingulate cortex (a paralimbic area vulnerable to early metabolic abnormalities in AD), temporal and prefrontal cortex (unimodal and heteromodal sensory association areas vulnerable to early neuritic plaque pathology in AD), and primary visual cortex (a primary sensory area relatively spared in early AD). These neuronal profiles will provide valuable reference information for future studies of the brain, in normal aging, AD and other neurological and psychiatric disorders.

摘要

在本文中,我们对来自临床和组织病理学正常的老年人大脑六个功能和解剖学上不同区域的激光捕获显微切割神经元的基因表达谱进行了表征和比较。这些区域也已知对阿尔茨海默病(AD)的组织病理学和代谢特征具有不同的易损性,包括内嗅皮质和海马体(边缘和边缘旁区域易受AD早期神经原纤维缠结病理影响)、后扣带回皮质(边缘旁区域易受AD早期代谢异常影响)、颞叶和前额叶皮质(单峰和异模态感觉联合区域易受AD早期神经炎斑块病理影响)以及初级视觉皮质(在AD早期相对未受影响的初级感觉区域)。这些神经元谱将为未来关于正常衰老、AD以及其他神经和精神疾病的大脑研究提供有价值的参考信息。

相似文献

1
Gene expression profiles in anatomically and functionally distinct regions of the normal aged human brain.
Physiol Genomics. 2007 Feb 12;28(3):311-22. doi: 10.1152/physiolgenomics.00208.2006. Epub 2006 Oct 31.
2
Altered neuronal gene expression in brain regions differentially affected by Alzheimer's disease: a reference data set.
Physiol Genomics. 2008 Apr 22;33(2):240-56. doi: 10.1152/physiolgenomics.00242.2007. Epub 2008 Feb 12.
3
Alzheimer's disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons.
Proc Natl Acad Sci U S A. 2008 Mar 18;105(11):4441-6. doi: 10.1073/pnas.0709259105. Epub 2008 Mar 10.
4
Neuronal gene expression in non-demented individuals with intermediate Alzheimer's Disease neuropathology.
Neurobiol Aging. 2010 Apr;31(4):549-66. doi: 10.1016/j.neurobiolaging.2008.05.013. Epub 2008 Jun 24.
5
Regional mosaic genomic heterogeneity in the elderly and in Alzheimer's disease as a correlate of neuronal vulnerability.
Acta Neuropathol. 2015 Oct;130(4):501-10. doi: 10.1007/s00401-015-1465-5. Epub 2015 Aug 23.
6
Brain gene expression patterns differentiate mild cognitive impairment from normal aged and Alzheimer's disease.
Neurobiol Aging. 2014 Sep;35(9):1961-72. doi: 10.1016/j.neurobiolaging.2014.03.031. Epub 2014 Apr 2.
8
9
Early Alzheimer-type lesions in cognitively normal subjects.
Neurobiol Aging. 2018 Feb;62:34-44. doi: 10.1016/j.neurobiolaging.2017.10.002. Epub 2017 Oct 13.

引用本文的文献

1
Identification of GABBR2 as a diagnostic marker and its association with Aβ in Alzheimer's disease.
Biochem Biophys Rep. 2025 Apr 28;42:102035. doi: 10.1016/j.bbrep.2025.102035. eCollection 2025 Jun.
3
Estimating progression of Alzheimer's disease with extracellular vesicle-related multi-omics risk models.
Front Aging Neurosci. 2025 Jul 24;17:1617611. doi: 10.3389/fnagi.2025.1617611. eCollection 2025.
7
Identification and validation of pyroptosis-related genes in Alzheimer's disease based on multi-transcriptome and machine learning.
Front Aging Neurosci. 2025 May 14;17:1568337. doi: 10.3389/fnagi.2025.1568337. eCollection 2025.
9
Absence of astrocytic ceruloplasmin reverses the senescence process with aging of learning and memory abilities.
Redox Biol. 2025 May;82:103611. doi: 10.1016/j.redox.2025.103611. Epub 2025 Mar 24.
10
An Update on Neuroaging on Earth and in Spaceflight.
Int J Mol Sci. 2025 Feb 18;26(4):1738. doi: 10.3390/ijms26041738.

本文引用的文献

1
The p38 mitogen-activated protein kinase pathway in interferon signal transduction.
J Interferon Cytokine Res. 2005 Dec;25(12):749-56. doi: 10.1089/jir.2005.25.749.
2
Neural plasticity in the ageing brain.
Nat Rev Neurosci. 2006 Jan;7(1):30-40. doi: 10.1038/nrn1809.
3
Expression profiling in the aging brain: a perspective.
Ageing Res Rev. 2005 Nov;4(4):529-47. doi: 10.1016/j.arr.2005.06.009. Epub 2005 Oct 24.
4
Correlations between apolipoprotein E epsilon4 gene dose and brain-imaging measurements of regional hypometabolism.
Proc Natl Acad Sci U S A. 2005 Jun 7;102(23):8299-302. doi: 10.1073/pnas.0500579102. Epub 2005 Jun 2.
5
Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation.
Trends Biochem Sci. 2005 Jan;30(1):43-52. doi: 10.1016/j.tibs.2004.11.009.
6
Dynactin.
Annu Rev Cell Dev Biol. 2004;20:759-79. doi: 10.1146/annurev.cellbio.20.012103.094623.
7
Microarray analysis in Alzheimer's disease and normal aging.
IUBMB Life. 2004 Jun;56(6):349-54. doi: 10.1080/15216540412331286002.
8
Abnormal alpha-synuclein interactions with rab3a and rabphilin in diffuse Lewy body disease.
Neurobiol Dis. 2004 Jun;16(1):92-7. doi: 10.1016/j.nbd.2004.01.001.
9
Gene regulation and DNA damage in the ageing human brain.
Nature. 2004 Jun 24;429(6994):883-91. doi: 10.1038/nature02661. Epub 2004 Jun 9.
10
Regional expression of RGS4 mRNA in human brain.
Eur J Neurosci. 2004 Jun;19(11):3125-8. doi: 10.1111/j.0953-816X.2004.03364.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验