Fromm Katharina M
Department of Chemistry, University of Basel, Spitalstrasse 51, CH-4056, Basel.
Dalton Trans. 2006 Nov 21(43):5103-12. doi: 10.1039/b611042h. Epub 2006 Sep 22.
This overview on one of the subjects treated in our group deals with the synthesis and study of low-dimensional polymer and molecular solid state structures formed with alkaline earth metal ions in non-aqueous solvents. We have chosen several synthetic approaches in order to obtain such compounds. The first concept deals with the "cutting out" of structural fragments from a solid state structure of a binary compound, which will be explained with reference to BaI2. Depending on the size and concentration of oxygen donor ligands, used as chemical scissors on BaI2, three-, two-, one- and zero-dimensional derived adducts of BaI2 are obtained, comparable to a structural genealogy tree for BaI2. A second part deals with the supramolecular approach for the synthesis of low dimensional polymeric compounds based on alkaline earth metal iodides, obtained by the combination of metal ion coordination with hydrogen bonding between the cationic complexes and their anions. Certain circumstances allow rules to be established for the prediction of the dimensionality of a given compound, contributing to the fundamental problem of structure prediction in crystal engineering. A third section describes a synthetic approach for generating pure alkaline earth metal cage compounds as well as alkali and alkaline earth mixed metal clusters. A first step deals with different molecular solvated alkaline earth metal iodides which are investigated as a function of the ligand size in non-aqueous solvents. These are then reacted with some alkali metal compound in order to partially or totally eliminate alkali iodide and to form the targeted clusters. These unique structures of ligand stabilized metal halide, hydroxide and/or alkoxide and aryloxide aggregates are of interest as potential precursors for oxide materials and as catalysts. Approaches to two synthetic methods of the latter, sol-gel and (MO)CVD (metal-organic chemical vapour deposition), are investigated with some of our compounds. (D. C. Bradley, Chem. Rev., 1989, 89, 1317-22; K. G. Caulton and L. G. Hubert-Pfalzgraf, Chem. Rev., 1990, 90, 969-95; T. P. Hanusa, Coord. Chem. Rev., 2000, 210, 329-367; T. P. Hanusa, in Comprehensive Coordination Chemistry II, ed. J. A. McCleverty and T. J. Meyer, Elsevier, Amsterdam, 2004, vol. 3, 1-92). Finally, the physical properties of some of our compounds are described qualitatively in order to show the wide spectrum of possibilities and potential applications for chemistry in this field.
本综述围绕我们团队所研究的一个主题展开,涉及在非水溶剂中由碱土金属离子形成的低维聚合物和分子固态结构的合成与研究。为了获得此类化合物,我们选择了几种合成方法。第一个概念涉及从二元化合物的固态结构中“剪裁出”结构片段,这将以碘化钡(BaI₂)为例进行解释。根据用作切割BaI₂的化学剪刀的给氧配体的大小和浓度,可得到BaI₂的三维、二维、一维和零维衍生加合物,这类似于BaI₂的结构谱系树。第二部分涉及基于碱土金属碘化物合成低维聚合物化合物的超分子方法,该方法通过金属离子配位与阳离子配合物及其阴离子之间的氢键相结合而获得。某些情况下可以建立规则来预测给定化合物的维度,这有助于解决晶体工程中结构预测的基本问题。第三部分描述了生成纯碱土金属笼状化合物以及碱金属和碱土金属混合金属簇的合成方法。第一步涉及研究在非水溶剂中不同分子溶剂化的碱土金属碘化物,它们是配体大小的函数。然后将这些碘化物与一些碱金属化合物反应,以部分或完全消除碘化碱并形成目标簇。这些由配体稳定的金属卤化物、氢氧化物和/或醇盐及芳氧化物聚集体的独特结构,作为氧化物材料的潜在前体和催化剂具有重要意义。我们用一些化合物研究了后两种合成方法(溶胶 - 凝胶法和(金属有机)化学气相沉积法(MO)CVD)。(D. C. Bradley,《化学评论》,1989年,89卷,1317 - 22页;K. G. Caulton和L. G. Hubert - Pfalzgraf,《化学评论》,1990年,90卷,969 - 995页;T. P. Hanusa,《配位化学评论》,2000年,210卷,329 - 367页;T. P. Hanusa,载于《综合配位化学II》,J. A. McCleverty和T. J. Meyer编,Elsevier出版社,阿姆斯特丹,2004年,第3卷,1 - 92页)。最后,定性描述了我们一些化合物的物理性质,以展示该领域化学的广泛可能性和潜在应用。