de Val Natalia, Herschbach Haiko, Potier Noëlle, Dorsselaer Alain Van, Crichton Robert R
Department of Biochemistry, Université Catholique de Louvain, Bâtiment Lavoisier, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium.
FEBS Lett. 2006 Nov 13;580(26):6275-80. doi: 10.1016/j.febslet.2006.10.034. Epub 2006 Oct 24.
An essential difference between eukaryotic ferritins and bacterioferritins is that the latter contain naturally, in vivo haem as Fe-protoporphyrin IX. This haem is located in a hydrophobic pocket along the 2-fold symmetry axes and is liganded by two Met 52. However, in in vivo studies, a cofactor has been isolated in horse spleen apoferritin similar to protoporphyrin IX; in in vitro experiments, it has been shown that horse spleen apoferritin is able to interact with haem. Studies of haemin (Fe(III)-PPIX) incorporation into horse spleen apoferritin have been carried out, which show that the metal free porphyrin is found in a corresponding pocket to haem in bacterioferritins [Précigoux, G., Yariv, J., Gallois, B., Dautant, A., Courseille, C. and Langlois, d'Estaintot B. (1994) A crystallographic study of haem binding to ferritin. Acta Cryst. D 50, 739-743]. A mechanism of demetallation of haemin by L-chain apoferritin was proposed [Crichton, R.R., Soruco, J.A., Roland, F., Michaux, M.A., Gallois, B., Précigoux, G., Mahy, J.P. and Mansuy. (1997) Remarkable ability of horse spleen apoferritin to demetallate hemin and to metallate protoporphyrin IX as a function of pH. J. P. Biochem. 36, 49, 15049-15054]: this involved four Glu residues (53,56,57,60) situated at the entrance of the hydrophobic pocket and appeared to be favoured by acidic conditions. To verify this mechanism, we have mutated these four Glu to Gln and examined demetallation in both acidic and basic conditions. In this paper, we report the mass spectrometry studies of L-chain apoferritin and its mutant incubated with haemin and analysed after different times of incubation: 15 days, 2 months, 6 months, 9 months and 12 months. These studies show that the recombinant L-chain apoferritin and its mutant are able to demetallate haemin to give a hydroxyethyl protoporphyrin IX derivative in a dimeric form [Macieira, S., Martins, B. M. and Huber, R. (2003) Oxygen-dependent coproporphyrinogen IX oxidase from Escherichia coli: one-step purification and biochemical characterization. FEMS. Microbiology Letters 226, 31-37].
真核铁蛋白和细菌铁蛋白之间的一个本质区别在于,后者在体内天然含有作为铁原卟啉IX的血红素。这种血红素位于沿二重对称轴的疏水口袋中,并由两个甲硫氨酸52配位。然而,在体内研究中,已在马脾脱铁铁蛋白中分离出一种类似于原卟啉IX的辅因子;在体外实验中,已表明马脾脱铁铁蛋白能够与血红素相互作用。已经进行了血红素(Fe(III)-PPIX)掺入马脾脱铁铁蛋白的研究,结果表明无金属卟啉存在于细菌铁蛋白中与血红素对应的口袋中[Précigoux, G., Yariv, J., Gallois, B., Dautant, A., Courseille, C.和Langlois, d'Estaintot B.(1994年)血红素与铁蛋白结合的晶体学研究。Acta Cryst. D 50, 739 - 743]。提出了L链脱铁铁蛋白使血红素脱金属的机制[Crichton, R.R., Soruco, J.A., Roland, F., Michaux, M.A., Gallois, B., Précigoux, G., Mahy, J.P.和Mansuy.(1997年)马脾脱铁铁蛋白使血红素脱金属并使原卟啉IX金属化的显著能力与pH的关系。J. P. Biochem. 36, 49, 15049 - 15054]:这涉及位于疏水口袋入口处的四个谷氨酸残基(53、56、57、60),并且似乎在酸性条件下更有利。为了验证这一机制,我们将这四个谷氨酸突变为谷氨酰胺,并在酸性和碱性条件下检查脱金属情况。在本文中,我们报告了L链脱铁铁蛋白及其突变体与血红素一起孵育并在不同孵育时间(15天、2个月、6个月、9个月和12个月)后进行分析的质谱研究。这些研究表明,重组L链脱铁铁蛋白及其突变体能够使血红素脱金属,生成二聚体形式的羟乙基原卟啉IX衍生物[Macieira, S., Martins, B. M.和Huber, R.(2003年)来自大肠杆菌的氧依赖性粪卟啉原IX氧化酶:一步纯化和生化特性。FEMS. Microbiology Letters 226, 31 - 37]。