Kim Seok-Hyun, Nakagawa Hiroshi, Navaraj Arunasalam, Naomoto Yoshio, Klein-Szanto Andres J P, Rustgi Anil K, El-Deiry Wafik S
Laboratory of Molecular Oncology and Cell Cycle Regulation, Department of Medicine (Hematology/Oncology), University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
Cancer Res. 2006 Nov 1;66(21):10415-24. doi: 10.1158/0008-5472.CAN-06-2104.
To investigate pathways of human esophageal squamous cell transformation, we generated esophageal tumor cells using human telomerase- and SV40-immortalized primary esophageal epithelial cells (EPC2) by overexpression of selected combinations of oncogenes. H-Ras, c-Myc, or Akt, but not epidermal growth factor receptor (EGFR), induced transformed colonies in soft agar. By contrast, bioluminescence imaging of genetically altered immortalized esophageal cells revealed that Akt, EGFR, or H-Ras, but not c-Myc, resulted in tumor formation in immunodeficient mice. H-Ras-driven tumors showed highly tumorigenic phenotypes with 2.6 +/- 0.6 days for doubling, whereas Akt and EGFR tumors doubled every 9.5 +/- 1.6 and 6.1 +/- 1.2 days, respectively. H-Ras-driven tumors expressed the hypoxia-inducible factor target Glut1, whereas Akt- or EGFR-driven tumors had evidence of angiogenesis and no detectable Glut1 expression. Proliferation rates among these tumors were similar, but there was reduced apoptosis in the more aggressive H-Ras-driven tumors that also developed aneuploidy and multiple centrosomes. c-Myc overexpression did not result in tumorigenic conversion but introduction of Bcl-XL into c-Myc-expressing cells generated tumors. Although cytokeratin expression was typical of squamous carcinoma, gene expression profiling was done to compare the four different types of engineered tumors with human esophageal squamous cell carcinomas and adenocarcinomas. Interestingly, c-Myc plus Bcl-XL transformants mimicked squamous carcinomas, whereas H-Ras-, EGFR-, and Akt-driven tumors were similar to adenocarcinomas in their molecular profiles. These genetically engineered models may provide new platforms for understanding human esophagus cancer and may assist in the evaluation of new therapies.
为了研究人类食管鳞状细胞转化的途径,我们通过过表达选定的癌基因组合,利用人端粒酶和SV40永生化的原代食管上皮细胞(EPC2)生成了食管肿瘤细胞。H-Ras、c-Myc或Akt,但不是表皮生长因子受体(EGFR),在软琼脂中诱导形成转化菌落。相比之下,对基因改变的永生化食管细胞进行生物发光成像显示,Akt、EGFR或H-Ras,但不是c-Myc,在免疫缺陷小鼠中导致肿瘤形成。H-Ras驱动的肿瘤表现出高度致瘤性表型,倍增时间为2.6±0.6天,而Akt和EGFR肿瘤的倍增时间分别为每9.5±1.6天和6.1±1.2天。H-Ras驱动的肿瘤表达缺氧诱导因子靶标Glut1,而Akt或EGFR驱动的肿瘤有血管生成的证据且未检测到Glut1表达。这些肿瘤之间的增殖率相似,但在更具侵袭性的H-Ras驱动的肿瘤中凋亡减少,这些肿瘤还出现了非整倍体和多个中心体。c-Myc过表达未导致致瘤转化,但将Bcl-XL引入表达c-Myc的细胞中则产生了肿瘤。尽管细胞角蛋白表达是鳞状细胞癌的典型特征,但仍进行了基因表达谱分析,以比较四种不同类型的工程肿瘤与人类食管鳞状细胞癌和腺癌。有趣的是,c-Myc加Bcl-XL转化体模拟了鳞状细胞癌,而H-Ras、EGFR和Akt驱动的肿瘤在分子谱上与腺癌相似。这些基因工程模型可能为理解人类食管癌提供新的平台,并可能有助于评估新的治疗方法。