Lips Katrin S, Wunsch Julia, Zarghooni Shirin, Bschleipfer Thomas, Schukowski Konstantin, Weidner Wolfgang, Wessler Ignaz, Schwantes Ulrich, Koepsell Hermann, Kummer Wolfgang
Institute for Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany.
Eur Urol. 2007 Apr;51(4):1042-53. doi: 10.1016/j.eururo.2006.10.028. Epub 2006 Oct 27.
Previous studies provided indirect evidence for urothelial synthesis and release of acetylcholine (ACh). We aimed to determine directly the ACh content in the urothelium and to characterize the molecular components of its synthesis and release machinery.
The study was performed on mouse bladder and abraded urothelium, and human mucosal bladder biopsies. ACh content was measured by high-performance liquid chromatography-electrochemical. Reverse transcriptase-polymerase chain reaction (RT-PCR) and immunohistochemistry served to investigate expression of ACh-synthesizing enzymes-choline acetyltransferase (ChAT) and carnitine acetyltransferase (CarAT)-vesicular ACh transporter (VAChT), and polyspecific organic cation transporters (OCTs; isoforms 1-3). Transfected cells served to investigate whether the anticholinergic drug trospium chloride interferes with ACh-transporting OCTs.
ACh is present in the urothelium in a nanomolar range per gram of wet weight. RT-PCR data support the presence of CarAT but not ChAT. VAChT, used by neurons to shuffle ACh into synaptic vesicles, is detected in subepithelial cholinergic nerve fibres, but not by RT-PCR or immunohistochemistry in the urothelium. OCT1 and OCT3 are expressed by the urothelium. The quarternary ammonium base trospium chloride inhibits cation transport by OCTs with a potency rank order of OCT2 (IC(50)=0.67+/-0.42micromol/l)>OCT1 (IC(50)=6.2+/-2.1micromol/l)>OCT3 (IC(50)=871+/-177micromol/l).
This study demonstrates a urothelial non-neuronal cholinergic system that differs widely from that of neurons with respect to molecular components of the ACh synthesis and release machinery. Consequently, these two systems might be differentially targeted by pharmacologic approaches.
以往研究为尿路上皮合成和释放乙酰胆碱(ACh)提供了间接证据。我们旨在直接测定尿路上皮中的ACh含量,并鉴定其合成和释放机制的分子成分。
本研究在小鼠膀胱、擦伤的尿路上皮以及人膀胱黏膜活检组织上进行。采用高效液相色谱-电化学法测定ACh含量。逆转录聚合酶链反应(RT-PCR)和免疫组织化学用于研究ACh合成酶——胆碱乙酰转移酶(ChAT)和肉碱乙酰转移酶(CarAT)、囊泡ACh转运体(VAChT)以及多特异性有机阳离子转运体(OCTs;亚型1-3)的表达。转染细胞用于研究抗胆碱能药物曲司氯铵是否干扰ACh转运OCTs。
每克湿重的尿路上皮中ACh含量处于纳摩尔范围。RT-PCR数据支持CarAT的存在,但不支持ChAT的存在。神经元用于将ACh转运至突触囊泡的VAChT,在尿路上皮下层胆碱能神经纤维中可检测到,但在尿路上皮中通过RT-PCR或免疫组织化学未检测到。尿路上皮表达OCT1和OCT3。季铵碱曲司氯铵抑制OCTs介导的阳离子转运,其效力顺序为OCT2(IC50=0.67±0.42μmol/L)>OCT1(IC50=6.2±2.1μmol/L)>OCT3(IC50=871±177μmol/L)。
本研究证明了尿路上皮非神经元胆碱能系统,其在ACh合成和释放机制的分子成分方面与神经元胆碱能系统有很大差异。因此,这两种系统可能被不同的药理学方法靶向作用。