Kole Maarten H P, Bräuer Anja U, Stuart Greg J
Division of Neuroscience, John Curtin School of Medical Research, Australian National University, ACT, 0200, Canberra, Australia.
J Physiol. 2007 Jan 15;578(Pt 2):507-25. doi: 10.1113/jphysiol.2006.122028. Epub 2006 Nov 9.
While idiopathic generalized epilepsies are thought to evolve from temporal highly synchronized oscillations between thalamic and cortical networks, their cellular basis remains poorly understood. Here we show in a genetic rat model of absence epilepsy (WAG/Rij) that a rapid decline in expression of hyperpolarization-activated cyclic-nucleotide gated (HCN1) channels (I(h)) precedes the onset of seizures, suggesting that the loss of HCN1 channel expression is inherited rather than acquired. Loss of HCN1 occurs primarily in the apical dendrites of layer 5 pyramidal neurons in the cortex, leading to a spatially uniform 2-fold reduction in dendritic HCN current throughout the entire somato-dendritic axis. Dual whole-cell recordings from the soma and apical dendrites demonstrate that loss of HCN1 increases somato-dendritic coupling and significantly reduces the frequency threshold for generation of dendritic Ca2+ spikes by backpropagating action potentials. As a result of increased dendritic Ca2+ electrogenesis a large population of WAG/Rij layer 5 neurons showed intrinsic high-frequency burst firing. Using morphologically realistic models of layer 5 pyramidal neurons from control Wistar and WAG/Rij animals we show that the experimentally observed loss of dendritic I(h) recruits dendritic Ca2+ channels to amplify action potential-triggered dendritic Ca2+ spikes and increase burst firing. Thus, loss of function of dendritic HCN1 channels in layer 5 pyramidal neurons provides a somato-dendritic mechanism for increasing the synchronization of cortical output, and is therefore likely to play an important role in the generation of absence seizures.
虽然特发性全身性癫痫被认为是由丘脑和皮质网络之间的颞叶高度同步振荡演变而来,但其细胞基础仍知之甚少。在此,我们在失神癫痫的基因大鼠模型(WAG/Rij)中发现,超极化激活的环核苷酸门控(HCN1)通道(I(h))的表达在癫痫发作开始前迅速下降,这表明HCN1通道表达的丧失是遗传性的而非后天获得的。HCN1的丧失主要发生在皮质第5层锥体神经元的顶端树突中,导致整个体树突轴上树突HCN电流在空间上均匀降低2倍。对胞体和顶端树突进行的双全细胞记录表明,HCN1的丧失增加了体树突耦合,并显著降低了由反向传播动作电位产生树突Ca2+尖峰的频率阈值。由于树突Ca2+电活动增加,大量WAG/Rij第5层神经元表现出内在高频爆发式放电。利用来自对照Wistar和WAG/Rij动物的第5层锥体神经元的形态逼真模型,我们表明实验观察到的树突I(h)的丧失会募集树突Ca2+通道,以放大动作电位触发的树突Ca2+尖峰并增加爆发式放电。因此,第5层锥体神经元中树突HCN1通道的功能丧失为增加皮质输出同步性提供了一种体树突机制,因此可能在失神发作的产生中起重要作用。