Suppr超能文献

Efficient manipulation of nanoparticle-bound DNA via restriction endonuclease.

作者信息

Qin Wei Jie, Yung Lin Yue Lanry

机构信息

Department of Chemical and Biomolecular Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore.

出版信息

Biomacromolecules. 2006 Nov;7(11):3047-51. doi: 10.1021/bm060517o.

Abstract

As a programmable biopolymer, DNA has shown great potential in the fabrication and construction of nanometer-scale assemblies and devices. In this report, we described a strategy for efficient manipulation of gold nanoparticle-bound DNA using restriction endonuclease. The digestion efficiency of this restriction enzyme was studied by varying the surface coverage of stabilizer, the size of nanoparticles, as well as the distance between the nanoparticle surface and the enzyme-cutting site of particle-bound DNA. We found that the surface coverage of stabilizer is crucial for achieving high digestion efficiency. In addition, this stabilizer surface coverage can be tailored by varying the ion strength of the system. Based on the results of polyacrylamide gel electrophoresis and fluorescent study, a high digestion efficiency of 90+% for particle-bound DNA was achieved for the first time. This restriction enzyme manipulation can be considered as an additional level of control of the particle-bound DNA and is expected to be applied to manipulate more complicated nanostructures assembled by DNA.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验