Okouchi Masahiro, Okayama Naotsuka, Alexander Jonathan Steven, Aw Tak Yee
Department of Molecular & Cellular Physiology, LSU Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA.
Curr Neurovasc Res. 2006 Nov;3(4):249-61. doi: 10.2174/156720206778792876.
Increased oxidative stress and susceptibility of brain endothelium are contributing factors in the development of central nervous system complications in neuro-degenerative disorders in diabetes, Alzheimer's and Parkinson's disease. The molecular mechanisms underpinning the vulnerability of brain endothelial cells to chronic oxidative challenge have not been elucidated. Here, we investigated the oxidative susceptibility of human brain endothelial cells (IHEC) to chronic hyperglycemic stress and insulin signaling and cytoprotection. Chronic hyperglycemia exacerbated IHEC apoptosis in accordance with exaggerated cytosolic and mitochondrial glutathione and protein-thiol redox imbalance, and actin/Keap-1 S-glutathionylation. Insulin attenuated hyperglycemia-induced apoptosis via restored cytosolic and mitochondrial redox. Insulin stimulated glutamate-L-cysteine ligase (GCL) activity by activation of phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR signaling, increased serine phosphorylation and nuclear translocation of nuclear NF-E2-related factor 2 (Nrf2), and upregulation of Nrf2-dependent GCL-catalytic (GCLc) subunit expression. Expression of the GCL-modulatory subunit (GCLm) was unchanged. Inhibitors of insulin receptor tyrosine kinase, PI3K, Akt and mTOR abrogated insulin-induced Nrf2-mediated GCLc expression, redox balance, and IHEC survival. Collectively, these results demonstrate that human brain endothelial cells exhibit vulnerability to hyperglycemic stress which is associated with marked cytosolic and mitochondrial redox shifts. Activation of insulin signaling through PI3K/Akt/mTOR/Nrf2/ GCLc pathway affords significant cell protection by maintaining cellular redox balance.
氧化应激增加和脑内皮细胞易感性是糖尿病、阿尔茨海默病和帕金森病等神经退行性疾病中枢神经系统并发症发生发展的促成因素。脑内皮细胞对慢性氧化应激易感性的分子机制尚未阐明。在此,我们研究了人脑内皮细胞(IHEC)对慢性高血糖应激、胰岛素信号传导及细胞保护作用的氧化易感性。慢性高血糖加剧了IHEC凋亡,这与胞质和线粒体谷胱甘肽及蛋白质硫醇氧化还原失衡以及肌动蛋白/Keap-1 S-谷胱甘肽化加剧有关。胰岛素通过恢复胞质和线粒体氧化还原状态减轻高血糖诱导的凋亡。胰岛素通过激活磷脂酰肌醇3激酶(PI3K)/蛋白激酶B(Akt)/哺乳动物雷帕霉素靶蛋白(mTOR)信号传导刺激谷氨酸-L-半胱氨酸连接酶(GCL)活性,增加丝氨酸磷酸化及核因子E2相关因子2(Nrf2)的核转位,并上调Nrf2依赖的GCL催化(GCLc)亚基表达。GCL调节亚基(GCLm)的表达未改变。胰岛素受体酪氨酸激酶、PI3K、Akt和mTOR的抑制剂消除了胰岛素诱导的Nrf2介导的GCLc表达、氧化还原平衡及IHEC存活。总体而言,这些结果表明人脑内皮细胞对高血糖应激表现出易感性,这与明显的胞质和线粒体氧化还原变化有关。通过PI3K/Akt/mTOR/Nrf2/GCLc途径激活胰岛素信号传导可通过维持细胞氧化还原平衡提供显著的细胞保护作用。