Drouin Annick, Thorin-Trescases Nathalie, Hamel Edith, Falck John R, Thorin Eric
Université de Montréal, Department of Surgery and Research Center, Institut de Cardiologie de Montréal, Montréal, Québec, Canada.
Cardiovasc Res. 2007 Jan 1;73(1):73-81. doi: 10.1016/j.cardiores.2006.10.005. Epub 2006 Oct 13.
Hydrogen peroxide (H2O2) produced by the vascular endothelium is a signaling molecule regulating vascular tone. We hypothesized that H2O2 derived from eNOS activity could play a physiological role in endothelium-dependent dilation of mouse cerebral arteries.
Simultaneous endothelium-dependent dilation and fluorescence-associated free radical (DCF-DA) or NO (DAF-2) production were recorded in isolated and pressurized (60 mm Hg) cerebral artery of C57Bl/6 male mice.
Without synergism, N-nitro-L-arginine (L-NNA) or the H2O2 scavengers catalase, PEG-catalase and pyruvate reduced (P < 0.05) by 50% the endothelium-dependent dilation induced by acetylcholine (ACh). Simultaneously with the dilation, H2O2--but not NO--production, sensitive to either L-NNA or catalase, was detected. In cerebral arteries from C57Bl/6.eNOS-/- mice, catalase had no effect on ACh-induced dilation and no H2O2-associated fluorescence was observed. In C57Bl/6 mice, silver diethyldithiocarbamate (DETC), a superoxide dismutase (SOD) inhibitor, but not the specific NO scavenger 2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl3-oxide (PTIO), prevented ACh-induced dilation and H2O2 production suggesting that eNOS-derived superoxide is an intermediate in the production of H2O2. The catalase-sensitive ACh-induced dilation was restored by the eNOS cofactor tetrahydrobiopterin (BH4). This reversal was associated with a NO-associated fluorescence sensitive to PTIO but not to catalase. Soluble guanylate cyclase inhibition with 1H-[1,2,4]-oxadiazole-4,3-aquinoxalin-1-one (ODQ) prevented the dilation induced by ACh and by exogenous H2O2. Lastly, L-NNA, PTIO and ODQ--but not DETC, catalase or pyruvate--increased the pressure-dependent myogenic tone, suggesting that eNOS produces NO at rest, but leads to H2O2 during muscarinic stimulation.
H2O2-dependent dilation in mouse cerebral arteries appears to be a physiological eNOS-derived mechanism.
血管内皮产生的过氧化氢(H₂O₂)是一种调节血管张力的信号分子。我们推测,由内皮型一氧化氮合酶(eNOS)活性产生的H₂O₂可能在小鼠脑动脉内皮依赖性舒张中发挥生理作用。
在分离并加压至60毫米汞柱的C57Bl/6雄性小鼠脑动脉中,同时记录内皮依赖性舒张以及荧光相关自由基(2',7'-二氯二氢荧光素二乙酸酯,DCF-DA)或一氧化氮(NO,二氨基荧光素-2,DAF-2)的产生情况。
在无协同作用的情况下,N-硝基-L-精氨酸(L-NNA)或H₂O₂清除剂过氧化氢酶、聚乙二醇化过氧化氢酶和丙酮酸可使乙酰胆碱(ACh)诱导的内皮依赖性舒张降低(P < 0.05)50%。在舒张同时,检测到对L-NNA或过氧化氢酶敏感的H₂O₂产生,但未检测到NO产生。在C57Bl/6.eNOS基因敲除小鼠的脑动脉中,过氧化氢酶对ACh诱导的舒张无影响,且未观察到与H₂O₂相关的荧光。在C57Bl/6小鼠中,超氧化物歧化酶(SOD)抑制剂二乙基二硫代氨基甲酸银(DETC)可阻止ACh诱导的舒张和H₂O₂产生,而特异性NO清除剂2-苯基-4,4,5,5-四甲基咪唑啉-1-氧基-3-氧化物(PTIO)则无此作用,这表明eNOS衍生的超氧化物是H₂O₂产生的中间产物。eNOS辅因子四氢生物蝶呤(BH4)可恢复过氧化氢酶敏感的ACh诱导的舒张。这种逆转与对PTIO敏感但对过氧化氢酶不敏感的NO相关荧光有关。用1H-[1,2,4] -恶二唑并[4,3-a]喹喔啉-1-酮(ODQ)抑制可溶性鸟苷酸环化酶可阻止ACh和外源性H₂O₂诱导的舒张。最后,L-NNA、PTIO和ODQ(而非DETC、过氧化氢酶或丙酮酸)可增加压力依赖性肌源性张力,这表明eNOS在静息时产生NO,但在毒蕈碱刺激时导致H₂O₂产生。
小鼠脑动脉中依赖H₂O₂的舒张似乎是一种由eNOS衍生的生理机制。