Redshaw Carl, Rowan Michael A, Warford Lee, Homden Damien M, Arbaoui Abdessamad, Elsegood Mark R J, Dale Sophie H, Yamato Takehiko, Casas Carol Pérez, Matsui Shigekazu, Matsuura Sadahiko
Wolfson Materials and Catalysis Centre, School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich, NR4 7TJ, UK.
Chemistry. 2007;13(4):1090-107. doi: 10.1002/chem.200600679.
Reaction of [V(X)(OR)3] (X=O, Np-tolyl; R=Et, nPr or tBu) with p-tert-butylhexahomotrioxacalix[3]areneH3, LH3, affords the air-stable complexes [{V(X)L}n] (X=O, n=1 (1); X=Np-tolyl, n=2 (2)). Alternatively, 1 is readily available either from interaction of [V(mes)3THF] with LH3, and subsequent oxidation with O2 or upon reaction of LLi3 with [VOCl3]. Reaction of [V(Np-tolyl)(OtBu)3] with 1,3-dimethylether-p-tert-butylcalix[4]areneH2, Cax(OMe)2(OH)2, afforded [{VO(OtBu)}2(mu-O)Cax(OMe)2(O)2].2 MeCN (42 MeCN), in which two vanadium atoms are bound to just one calix[4]arene ligand; the n-propoxide analogue of 4, namely [{VO(OnPr)}2(mu-O)Cax(OMe)2(O)2].1.5 MeCN (51.5 MeCN), has also been isolated from a similar reaction using [V(O)(OnPr)3]. Reaction of [VOCl3], LiOtBu, (Me3Si)2O and Cax(OMe)2(OH)2 gave [{VO(OtBu)Cax(OMe)2(O)2}2Li4O2].8 MeCN (68 MeCN), in which an Li4O4 cube (two of the oxygen atoms are derived from the calixarene ligands) is sandwiched between two Cax(OMe)2(O)2. The reaction between [V(Np-tolyl)(OtBu)3] and Cax(OMe)2(OH)2, afforded [V(Np-tolyl)(OtBu)2Cax(OMe)2(O)(OH)]5 MeCN (75 MeCN), in which two tert-butoxide groups remain bound to the tetrahedral vanadium atom, which itself is bound to the calix[4]arene through only one phenolic oxygen atom. Reaction of p-tert-butylcalix[4]areneH4, Cax(OH)4 and [V(Np-tolyl)(OnPr)3] led to loss of the imido group and formation of the dimeric complex [{VCax(O)4(NCMe)}2].6 MeCN (86 MeCN). Monomeric vanadyl oxo- and imidocalix[4]arene complexes [V(X)Cax(O)3(OMe)(NCMe)] (X=O (11), Np-tolyl (12)) were obtained by the reaction of the methylether-p-tert-butylcalix[4]areneH3, Cax(OMe)(OH)3, and [V(X)(OR)3] (R=Et or nPr). Vanadyl calix[4]arene fragments can be linked by the reaction of 2,6-bis(bromomethyl)pyridine with Cax(OH)4 and subsequent treatment with [VOCl3] to afford the complex [{VOCax(O)4}2(mu-2,6-(CH2)2C5H3N)].4 MeCN (134 MeCN). The compounds 1-13 have been structurally characterised by single-crystal X-ray diffraction. Upon activation with methylaluminoxane, these complexes displayed poor activities, however, the use of dimethylaluminium chloride and the reactivator ethyltrichloroacetate generates highly active, thermally stable catalysts for the conversion of ethylene to, at 25 degrees C, ultra-high-molecular-weight (>5, 500,000), linear polyethylene, whilst at higher temperature (80 degrees C), the molecular weight of the polyethylene drops to about 450,000. Using 1 and 2 at 25 degrees C for ethylene/propylene co-polymerisation (50:50 feed) leads to ultra-high-molecular-weight (>2,900,000) polymer with about 14.5 mol% propylene incorporation. The catalytic systems employing the methyleneoxa-bridged complexes 1 and 2 are an order of magnitude more active than the bimetallic complexes 5 and 13, which, in turn, are an order of magnitude more active than pro-catalysts 8, 11 and 12. These differences in activity are discussed in terms of the structures of each class of complex.
[V(X)(OR)₃](X = O,对甲苯基;R = 乙基、正丙基或叔丁基)与对叔丁基六聚三氧杂杯[3]芳烃H₃(LH₃)反应,得到空气稳定的配合物[{V(X)L}ₙ](X = O,n = 1(1);X = 对甲苯基,n = 2(2))。另外,1可以通过[V(均三甲苯)₃·THF]与LH₃相互作用,随后用O₂氧化得到,或者通过LLi₃与[VOCl₃]反应得到。[V(对甲苯基)(OtBu)₃]与1,3 - 二甲氧基 - 对叔丁基杯[4]芳烃H₂(Cax(OMe)₂(OH)₂)反应,得到[{VO(OtBu)}₂(μ - O)Cax(OMe)₂(O)₂]·2 MeCN(4·2 MeCN),其中两个钒原子仅与一个杯[4]芳烃配体结合;4的正丙氧基类似物,即[{VO(OnPr)}₂(μ - O)Cax(OMe)₂(O)₂]·1.5 MeCN(5·1.5 MeCN),也从使用[V(O)(OnPr)₃]的类似反应中分离得到。[VOCl₃]、LiOtBu、(Me₃Si)₂O和Cax(OMe)₂(OH)₂反应得到[{VO(OtBu)Cax(OMe)₂(O)₂}₂Li₄O₂]·8 MeCN(6·8 MeCN),其中一个Li₄O₄立方体(两个氧原子来自杯芳烃配体)夹在两个Cax(OMe)₂(O)₂之间。[V(对甲苯基)(OtBu)₃]与Cax(OMe)₂(OH)₂反应,得到[V(对甲苯基)(OtBu)₂Cax(OMe)₂(O)(OH)]·5 MeCN(7·5 MeCN),其中两个叔丁氧基仍与四面体钒原子结合,该钒原子本身仅通过一个酚氧原子与杯[4]芳烃结合。对叔丁基杯[4]芳烃H₄(Cax(OH)₄)与[V(对甲苯基)(OnPr)₃]反应导致亚氨基基团失去并形成二聚配合物[{VCax(O)₄(NCMe)}₂]·6 MeCN(8·6 MeCN)。通过甲基醚 - 对叔丁基杯[4]芳烃H₃(Cax(OMe)(OH)₃)与[V(X)(OR)₃](R = 乙基或正丙基)反应得到单体钒氧基和亚氨基杯[4]芳烃配合物[V(X)Cax(O)₃(OMe)(NCMe)](X = O(11),对甲苯基(12))。钒氧基杯[4]芳烃片段可以通过2,6 - 双(溴甲基)吡啶与Cax(OH)₄反应,随后用[VOCl₃]处理连接起来,得到配合物[{VOCax(O)₄}₂(μ - 2,6 - (CH₂)₂C₅H₃N)]·4 MeCN(13·4 MeCN)。化合物1 - 13已通过单晶X射线衍射进行结构表征。用甲基铝氧烷活化后,这些配合物表现出较差的活性,然而,使用二甲基氯化铝和再活化剂乙基三氯乙酸酯可生成用于将乙烯转化为在25℃下超高分子量(>5,500,000)线性聚乙烯的高活性、热稳定催化剂,而在较高温度(80℃)下,聚乙烯的分子量降至约450,000。在25℃下使用1和2进行乙烯/丙烯共聚(50:50进料)可得到超高分子量(>2,900,000)聚合物,其中丙烯掺入量约为14.5 mol%。使用亚甲基氧桥连配合物1和2的催化体系比双金属配合物5和13活性高一个数量级,而双金属配合物5和13又比前体催化剂8、11和12活性高一个数量级。根据每类配合物的结构讨论了这些活性差异。