Tsai Irene Y, Green J Angelo, Kimura Masahiro, Jacobson Bruce, Russell Thomas P
Polymer Science and Engineering Department, University of Massachusetts, Amherst, Massachusetts 01003, USA.
J Biomed Mater Res A. 2007 Feb;80(2):509-12. doi: 10.1002/jbm.a.30935.
Transparent substrates having heterogeneities ranging from nanometer to micrometer lateral length scale were fabricated to study cell migration. The surfaces were generated using thin films of block copolymers and homopolymer blends on ultra smooth transparent polyethylene terephthalate films. Results show that the lateral size scale of the surface heterogeneities affects fibroblast (NIH-3T3) adhesion, spreading and motility. More specifically, fibroblasts migrate faster on micron-sized than on nanometer-sized heterogeneities. Cell movements and morphology on the micron patterned surfaces resemble cells cultured in a 3D environment. These surfaces, therefore, can potentially be utilized as models to study cell behavior in physiologically relevant conditions which can add to our fundamental understanding of cell-substrate interactions and facilitate development of surfaces for medical devices.
制备了横向长度尺度从纳米到微米不等的不均匀性透明基底,用于研究细胞迁移。通过在超光滑透明聚对苯二甲酸乙二酯薄膜上使用嵌段共聚物和均聚物共混物薄膜来生成这些表面。结果表明,表面不均匀性的横向尺寸尺度会影响成纤维细胞(NIH-3T3)的黏附、铺展和运动。更具体地说,成纤维细胞在微米级不均匀性表面上的迁移速度比在纳米级不均匀性表面上更快。在微米图案化表面上的细胞运动和形态类似于在三维环境中培养的细胞。因此,这些表面有可能被用作模型,以研究生理相关条件下的细胞行为,这有助于我们对细胞-基底相互作用的基本理解,并促进医疗设备表面的开发。