Suppr超能文献

中国西部祁连山地区净初级生产力的观测与模拟

Observation and simulation of net primary productivity in Qilian Mountain, western China.

作者信息

Zhou Y, Zhu Q, Chen J M, Wang Y Q, Liu J, Sun R, Tang S

机构信息

College of Geography and Remote Sensing, Beijing Normal University, China.

出版信息

J Environ Manage. 2007 Nov;85(3):574-84. doi: 10.1016/j.jenvman.2006.04.024. Epub 2006 Nov 28.

Abstract

We modeled net primary productivity (NPP) at high spatial resolution using an advanced spaceborne thermal emission and reflection radiometer (ASTER) image of a Qilian Mountain study area using the boreal ecosystem productivity simulator (BEPS). Two key driving variables of the model, leaf area index (LAI) and land cover type, were derived from ASTER and moderate resolution imaging spectroradiometer (MODIS) data. Other spatially explicit inputs included daily meteorological data (radiation, precipitation, temperature, humidity), available soil water holding capacity (AWC), and forest biomass. NPP was estimated for coniferous forests and other land cover types in the study area. The result showed that NPP of coniferous forests in the study area was about 4.4 tCha(-1)y(-1). The correlation coefficient between the modeled NPP and ground measurements was 0.84, with a mean relative error of about 13.9%.

摘要

我们使用先进星载热发射和反射辐射计(ASTER)对祁连山研究区域的图像,通过北方生态系统生产力模拟器(BEPS),在高空间分辨率下模拟了净初级生产力(NPP)。该模型的两个关键驱动变量,叶面积指数(LAI)和土地覆盖类型,是从ASTER和中分辨率成像光谱仪(MODIS)数据中得出的。其他空间明确的输入包括每日气象数据(辐射、降水、温度、湿度)、有效土壤持水量(AWC)和森林生物量。对研究区域内的针叶林和其他土地覆盖类型的NPP进行了估算。结果表明,研究区域内针叶林的NPP约为4.4 tCha(-1)y(-1)。模拟的NPP与地面测量值之间的相关系数为0.84,平均相对误差约为13.9%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验