Liang Nan-Ying, Huang Guang-Bin, Saratchandran P, Sundararajan N
School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore.
IEEE Trans Neural Netw. 2006 Nov;17(6):1411-23. doi: 10.1109/TNN.2006.880583.
In this paper, we develop an online sequential learning algorithm for single hidden layer feedforward networks (SLFNs) with additive or radial basis function (RBF) hidden nodes in a unified framework. The algorithm is referred to as online sequential extreme learning machine (OS-ELM) and can learn data one-by-one or chunk-by-chunk (a block of data) with fixed or varying chunk size. The activation functions for additive nodes in OS-ELM can be any bounded nonconstant piecewise continuous functions and the activation functions for RBF nodes can be any integrable piecewise continuous functions. In OS-ELM, the parameters of hidden nodes (the input weights and biases of additive nodes or the centers and impact factors of RBF nodes) are randomly selected and the output weights are analytically determined based on the sequentially arriving data. The algorithm uses the ideas of ELM of Huang et al. developed for batch learning which has been shown to be extremely fast with generalization performance better than other batch training methods. Apart from selecting the number of hidden nodes, no other control parameters have to be manually chosen. Detailed performance comparison of OS-ELM is done with other popular sequential learning algorithms on benchmark problems drawn from the regression, classification and time series prediction areas. The results show that the OS-ELM is faster than the other sequential algorithms and produces better generalization performance.
在本文中,我们在一个统一的框架下,为具有加法或径向基函数(RBF)隐藏节点的单隐藏层前馈网络(SLFNs)开发了一种在线序贯学习算法。该算法被称为在线序贯极限学习机(OS-ELM),它可以逐个数据或逐块(一块数据)地学习数据,块大小可以固定也可以变化。OS-ELM中加法节点的激活函数可以是任何有界非恒定分段连续函数,RBF节点的激活函数可以是任何可积分段连续函数。在OS-ELM中,隐藏节点的参数(加法节点的输入权重和偏置或RBF节点的中心和影响因子)是随机选择的,并且输出权重是根据顺序到达的数据通过解析确定的。该算法采用了Huang等人开发的用于批量学习的极限学习机(ELM)的思想,已证明其速度极快,泛化性能优于其他批量训练方法。除了选择隐藏节点的数量外,无需手动选择其他控制参数。在从回归、分类和时间序列预测领域选取的基准问题上,对OS-ELM与其他流行的序贯学习算法进行了详细的性能比较。结果表明,OS-ELM比其他序贯算法更快,并且产生更好的泛化性能。