Koprivova Anna, Stemmer Christian, Altmann Friedrich, Hoffmann Axel, Kopriva Stanislav, Gorr Gilbert, Reski Ralf, Decker Eva L
University of Freiburg, Plant Biotechnology, Schaenzlestr. 1, 79104 Freiburg, Germany.
Plant Biotechnol J. 2004 Nov;2(6):517-23. doi: 10.1111/j.1467-7652.2004.00100.x.
Using plants as production factories for therapeutic proteins requires modification of their N-glycosylation pattern because of the immunogenicity of plant-specific sugar residues. In an attempt towards such humanization, we disrupted the genes for alpha1,3-fucosyltransferase and beta1,2-xylosyltransferase in Physcomitrella patens by homologous recombination. The single Deltafuc-t and Deltaxyl-t plants, as well as the double knockout, lacked transcripts of the corresponding genes, but did not differ from the wild-type moss in morphology, growth, development, and ability to secrete a recombinant protein, the human vascular endothelial growth factor VEGF(121), into the culture medium. N-Glycan analysis, however, revealed the absence of 1,3-fucosyl and/or 1,2-xylosyl residues, respectively. Therefore, the modifications described here represent the key step towards the generation of moss lines suitable for the production of plant-made glycosylated biopharmaceuticals with nonallergenic N-glycans.
由于植物特异性糖残基具有免疫原性,因此将植物用作治疗性蛋白质的生产工厂需要对其N-糖基化模式进行修饰。为了实现这种人源化,我们通过同源重组破坏了小立碗藓中α1,3-岩藻糖基转移酶和β1,2-木糖基转移酶的基因。单缺失Δfuc-t和Δxyl-t植株以及双敲除植株均缺乏相应基因的转录本,但在形态、生长、发育以及将重组蛋白人血管内皮生长因子VEGF(121)分泌到培养基中的能力方面与野生型苔藓没有差异。然而,N-聚糖分析显示分别不存在1,3-岩藻糖基和/或1,2-木糖基残基。因此,本文所述的修饰是朝着生成适合生产具有无致敏性N-聚糖的植物源糖基化生物药物的苔藓品系迈出的关键一步。