Zhang Shaoyan, Li Weiyang, Li Chunsheng, Chen Jun
Institute of New Energy Material Chemistry, Nankai University, Tianjin 300071, P.R. China.
J Phys Chem B. 2006 Dec 14;110(49):24855-63. doi: 10.1021/jp065478p.
We report on the synthesis, characterization, and electrochemical properties of Ag(2)V(4)O(11) nanowires, alpha-AgVO(3) microrods, and beta-AgVO(3) nanowires that were synthesized through a simple and facile low-temperature hydrothermal approach without any template or catalyst. It was found that by simply controlling the hydrothermal reaction parameters such as pH and dwell time, the transformation of alpha-AgVO(3) microrods to beta-AgVO(3) nanowires were readily achieved through a "ripening-splitting model" mechanism. Electrochemical measurements revealed that the as-prepared Ag(2)V(4)O(11) nanowires, alpha-AgVO(3) microrods, and beta-AgVO(3) nanowires exhibited high discharge capacities and excellent high-rate dischargeability. In particular, the beta-AgVO(3) nanowires have much higher capacity above 3 V than that of alpha-AgVO(3) microrods, Ag(2)V(4)O(11) nanowires, and commercial Ag(2)V(4)O(11) bulk. The mechanisms for electrochemical lithium intercalation of the AgVO(3) nanostructures were also discussed. It is anticipated that the novel Ag(2)V(4)O(11) and AgVO(3) one-dimensional nano/microstructures are promising cathode candidates in the application of primary lithium ion batteries for implantable cardioverter defibrillators (ICDs).
我们报道了通过一种简单便捷的低温水热法合成的Ag₂V₄O₁₁纳米线、α-AgVO₃微棒和β-AgVO₃纳米线的合成、表征及电化学性质,该方法无需任何模板或催化剂。研究发现,通过简单控制水热反应参数,如pH值和保温时间,α-AgVO₃微棒可通过“熟化-分裂模型”机制轻松转化为β-AgVO₃纳米线。电化学测量表明,所制备的Ag₂V₄O₁₁纳米线、α-AgVO₃微棒和β-AgVO₃纳米线表现出高放电容量和优异的高倍率放电性能。特别是,β-AgVO₃纳米线在3 V以上的容量比α-AgVO₃微棒、Ag₂V₄O₁₁纳米线和商用Ag₂V₄O₁₁块体高得多。还讨论了AgVO₃纳米结构电化学锂嵌入的机制。预计新型的Ag₂V₄O₁₁和AgVO₃一维纳米/微结构在植入式心脏除颤器(ICD)的一次锂离子电池应用中是有前景的阴极候选材料。