Suppr超能文献

肽和蛋白质电泳的建模:“珠粒法”的改进,纳入离子弛豫和“有限尺寸效应”

Modeling the electrophoresis of peptides and proteins: improvements in the "bead method" to include ion relaxation and "finite size effects".

作者信息

Xin Yao, Hess Richard, Ho Nhi, Allison Stuart

机构信息

Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-4098, USA.

出版信息

J Phys Chem B. 2006 Dec 14;110(49):25033-44. doi: 10.1021/jp065079u.

Abstract

A bead model methodology developed in our lab (Xin et al. J. Phys. Chem. B 2006, 110, 1038) and applicable to modeling the free solution electrophoretic mobility of peptides and proteins is generalized in two significant ways. First, an approximate account is taken of the relaxation effect, which makes the methodology applicable to more highly charged peptides and proteins than was previously possible. Second, a more accurate account is taken of the finite size of the beads making up the model structure. This improvement makes the method applicable at higher salt concentrations and/or to models consisting of larger sized subunits. The relaxation effect is accounted for by correcting "unrelaxed" mobilities on the basis of model size and average electrostatic surface, or zeta potential. Correction factors are estimated using those of spheres with the same hydrodynamic radius and zeta potential as the model structure. The correction factors of spheres are readily determined. The more general methodology is first applied to two sets of peptides (74 different peptides total) varying in size from 2 to 42 amino acids. The sets also cover a wide range of net charges. It is shown that accounting for finite bead size results in a small change in model mobilities under the conditions of the experiments (35 mM monovalent salt). The correction for ion relaxation, however, can be significant for highly charged peptides and improves agreement between model and experimental mobilities. Our correction procedure is also tested by examining the electrophoretic mobility of a particular protein "charge ladder" (Carbeck et al. J. Am. Chem. Soc. 1999, 121, 10,671), where the protein charge is varied over a wide range yet the conformation remains essentially constant. In summary, the effects of ion relaxation can be significant if the absolute electrophoretic mobility of a peptide exceeds approximately 0.20 cm2/(kV s).

摘要

我们实验室开发的一种珠子模型方法(Xin等人,《物理化学杂志B》,2006年,第110卷,第1038页),适用于对肽和蛋白质的自由溶液电泳迁移率进行建模,在两个重要方面得到了推广。首先,对弛豫效应进行了近似考虑,这使得该方法能够应用于比以前电荷更高的肽和蛋白质。其次,对构成模型结构的珠子的有限尺寸进行了更精确的考虑。这一改进使得该方法能够应用于更高的盐浓度和/或由更大尺寸亚基组成的模型。通过根据模型大小和平均静电表面或zeta电位校正“未弛豫”迁移率来考虑弛豫效应。使用与模型结构具有相同流体动力学半径和zeta电位的球体的校正因子来估计校正因子。球体的校正因子很容易确定。更通用的方法首先应用于两组肽(总共74种不同的肽),其大小从2到42个氨基酸不等。这两组肽也涵盖了广泛的净电荷范围。结果表明,在实验条件(35 mM单价盐)下,考虑珠子的有限尺寸会导致模型迁移率有微小变化。然而,对于高电荷肽,离子弛豫校正可能很显著,并改善了模型迁移率与实验迁移率之间的一致性。我们的校正程序还通过检查一种特定蛋白质“电荷梯”(Carbeck等人,《美国化学会杂志》,1999年,第121卷,第10671页)的电泳迁移率进行了测试,其中蛋白质电荷在很宽的范围内变化,但构象基本保持不变。总之,如果肽的绝对电泳迁移率超过约0.20 cm2/(kV s),离子弛豫的影响可能会很显著。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验