Suppr超能文献

涌现功能神经网络中的自组织临界性和无标度特性。

Self-organized criticality and scale-free properties in emergent functional neural networks.

作者信息

Shin Chang-Woo, Kim Seunghwan

机构信息

National Core Research Center for System Biodynamics, and Nonlinear and Complex Systems Laboratory, Department of Physics, Pohang University of Science and Technology, San 31, Hyoja-dong, Nam-gu, Pohang, Gyungbuk, Korea, 790-784.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Oct;74(4 Pt 2):045101. doi: 10.1103/PhysRevE.74.045101. Epub 2006 Oct 9.

Abstract

Recent studies on complex systems have shown that the synchronization of oscillators, including neuronal ones, is faster, stronger, and more efficient in small-world networks than in regular or random networks. We show that the functional structures in the brain can be self-organized to both small-world and scale-free networks by synaptic reorganization via spike timing dependent synaptic plasticity instead of conventional Hebbian learning rules. We show that the balance between the excitatory and the inhibitory synaptic inputs is critical in the formation of the functional structure, which is found to lie in a self-organized critical state.

摘要

近期对复杂系统的研究表明,包括神经元振荡器在内的振荡器在小世界网络中的同步比在规则网络或随机网络中更快、更强且更高效。我们表明,大脑中的功能结构可以通过基于发放时间依赖的突触可塑性的突触重组,而非传统的赫布学习规则,自组织形成小世界网络和无标度网络。我们还表明,兴奋性和抑制性突触输入之间的平衡在功能结构的形成中至关重要,而功能结构处于自组织临界状态。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验