通过逐点互信息检测非快速眼动睡眠脑电图中的激活阶段并量化耦合

Detection of activation phases and quantification of coupling in NREM sleep EEG by pointwise transinformation.

作者信息

Landwehr R

机构信息

Department of Neurology, Westpfalz Klinikum, Hellmut-Hartert-Str. 1, 67657 Kaiserslautern, Germany.

出版信息

Sleep Med. 2007 Jan;8(1):65-72. doi: 10.1016/j.sleep.2006.05.019. Epub 2006 Dec 6.

Abstract

BACKGROUND

The coupling dynamics of two time series can be assessed by pointwise transinformation (PTI). Due to its high temporal resolution, this algorithm is ideal for analysis of sleep microstructure. Different types of electroencephalographic (EEG) activation phases, like single K-complexes, K-complexes associated with spindle or alpha activity, K-complexes mixed with delta waves, and arousals, can be detected and changes in EEG coupling can be quantified.

METHODS

Nine hundred ninety-one one-minute EEG segments (C3-A2/C4-A1) containing the described types of activation phases were selected from the sleep EEGs of 12 healthy persons. PTI was calculated with 250 Hz resolution and an embedding dimension of 20. An averaged PTI curve was assessed for single K-complexes and K-complexes followed by spindle and alpha activity, respectively.

RESULTS

During background activity, PTI was nearly 0. With the onset of a K-complex, PTI increased significantly in a sequence of distinct phases (rising - peak - decay). For single K-complexes, the PTI curve had a nearly symmetric dome-shaped form. The decay phase was prolonged by subsequent spindle or alpha activity. In K-complexes mixed with delta activity and in arousals, repetitive maxima of PTI were obtained. The durations of arousals and their coupling phases were correlated (r=0.83).

CONCLUSIONS

PTI displays the coupling dynamics of the sleep EEG with high resolution. It detects phases of activation represented by single K-complexes and various types of arousals. These induce a specific run of the PTI curve clearly distinguishable from background activity. PTI might, therefore, prove useful in the analysis of sleep microstructure.

摘要

背景

两个时间序列的耦合动力学可以通过逐点互信息(PTI)进行评估。由于其具有较高的时间分辨率,该算法非常适合用于睡眠微观结构的分析。不同类型的脑电图(EEG)激活阶段,如单个K复合波、与纺锤波或α活动相关的K复合波、与δ波混合的K复合波以及觉醒,可以被检测到,并且EEG耦合的变化可以被量化。

方法

从12名健康人的睡眠脑电图中选取了991个包含上述激活阶段类型的1分钟EEG片段(C3-A2/C4-A1)。以250Hz的分辨率和20的嵌入维数计算PTI。分别评估了单个K复合波以及随后出现纺锤波和α活动的K复合波的平均PTI曲线。

结果

在背景活动期间,PTI几乎为0。随着K复合波的出现,PTI在一系列不同阶段(上升 - 峰值 - 衰减)显著增加。对于单个K复合波,PTI曲线具有近乎对称的圆顶形状。随后的纺锤波或α活动延长了衰减阶段。在与δ活动混合的K复合波和觉醒中,获得了PTI的重复最大值。觉醒的持续时间与其耦合阶段相关(r = 0.83)。

结论

PTI以高分辨率显示睡眠脑电图的耦合动力学。它检测由单个K复合波和各种类型的觉醒所代表的激活阶段。这些会引发PTI曲线的特定走势,明显区别于背景活动。因此,PTI可能在睡眠微观结构分析中被证明是有用的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索