Suppr超能文献

基于惩罚I散度最小化从噪声数据中进行相位恢复。

Phase retrieval from noisy data based on minimization of penalized I-divergence.

作者信息

Choi Kerkil, Lanterman Aaron D

机构信息

School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.

出版信息

J Opt Soc Am A Opt Image Sci Vis. 2007 Jan;24(1):34-49. doi: 10.1364/josaa.24.000034.

Abstract

We study noise artifacts in phase retrieval based on minimization of an information-theoretic discrepancy measure called Csiszár's I-divergence. We specifically focus on adding Poisson noise to either the autocorrelation of the true image (as in astronomical imaging through turbulence) or the squared Fourier magnitudes of the true image (as in x-ray crystallography). Noise effects are quantified via various error metrics as signal-to-noise ratios vary. We propose penalized minimum I-divergence methods to suppress the observed noise artifacts. To avoid computational difficulties arising from the introduction of a penalty, we adapt Green's one-step-late approach for use in our minimum I-divergence framework.

摘要

我们基于一种名为Csiszár信息散度的信息论差异度量的最小化来研究相位恢复中的噪声伪影。我们特别关注在真实图像的自相关(如通过湍流进行天文成像)或真实图像的平方傅里叶幅度(如在X射线晶体学中)中添加泊松噪声。随着信噪比的变化,通过各种误差度量来量化噪声效应。我们提出了惩罚最小信息散度方法来抑制观察到的噪声伪影。为了避免因引入惩罚而产生的计算困难,我们采用格林的一步延迟方法并将其应用于我们的最小信息散度框架中。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验