Ty Hopkins J, McLoda Todd, McCaw Steve
Human Performance Research Center, Brigham Young University, Provo, UT 84602-2205, USA.
Eur J Appl Physiol. 2007 Mar;99(4):371-8. doi: 10.1007/s00421-006-0356-9. Epub 2006 Dec 13.
Dynamic response characteristics of ankle musculature following sudden ankle inversion have traditionally been tested in a static, standing position. However, this model does not take into consideration muscle activity and loading characteristics associated with active gait. This study compared muscle reaction times and amplitudes from sudden ankle inversion during standing (standing group) and walking (walking group) using one of two similar devices for each of these conditions. Surface EMG was collected from the peroneus longus (PL), brevis (PB), and tibialis anterior (TA) of the dominant leg from 25 subjects (age 20 +/- 1 years, height 174.0 +/- 10.2 cm, mass 74.3 +/- 12.9 kg) for each condition (walking and standing). Time to total inversion ROM (28 degrees ) was greater in the walking group (114.9 +/- 15.0 ms) than the standing group (65.6 +/- 17.8 ms, P < 0.05), whereas reaction time was less in the peroneals in the walking group (PL 56.9 +/- 8.4 ms, PB 60.1 +/- 10.6 ms, TA 65.0 +/- 14.9 ms) compared to the standing group (PL 74.3 +/- 8.5 ms, PB 73.5 +/- 8.2 ms, TA 73.3 +/- 8.3, P < 0.05). Additionally, Peak normalized EMG (% MVIC) for the walking condition (PL 367 +/- 254, PB 405 +/- 359, TA 84 +/- 39) exceeded that of the standing condition (PL 310 +/- 239, PB 328 +/- 215, TA 76 +/- 39, P < 0.05), and average normalized EMG (% MVIC) was greater in the peroneals for the walking condition (PL 233 +/- 171, PB 280 +/- 255) than the standing condition (PL 164 +/- 131, PB 193 +/- 137, P < 0.05). The differences noted between the conditions provide evidence that a dynamic response to ankle injury mechanisms is much different in a walking model compared to a traditional standing model. A walking model may be a more functional approach for evaluating dynamic response characteristics of ankle musculature due to sudden ankle inversion.
传统上,突然发生踝关节内翻后踝关节肌肉组织的动态反应特性是在静态站立姿势下进行测试的。然而,该模型没有考虑到与主动步态相关的肌肉活动和负荷特性。本研究使用两种相似设备之一,分别比较了25名受试者(年龄20±1岁,身高174.0±10.2厘米,体重74.3±12.9千克)在站立(站立组)和行走(行走组)状态下突然发生踝关节内翻时的肌肉反应时间和幅度。在每种状态(行走和站立)下,均从优势腿的腓骨长肌(PL)、腓骨短肌(PB)和胫骨前肌(TA)采集表面肌电图。行走组达到总内翻活动度(28度)的时间(114.9±15.0毫秒)长于站立组(65.6±17.8毫秒,P<0.05),而行走组腓骨肌群的反应时间短于站立组(PL:行走组56.9±8.4毫秒,站立组74.3±8.5毫秒;PB:行走组60.1±10.6毫秒,站立组73.5±8.2毫秒;TA:行走组65.0±14.9毫秒,站立组73.3±8.3毫秒,P<0.05)。此外,行走状态下的峰值标准化肌电图(%MVIC)(PL 367±254,PB 405±359,TA 84±39)超过站立状态下的(PL 310±239,PB 328±215,TA 76±39,P<0.05),且行走状态下腓骨肌群的平均标准化肌电图(%MVIC)(PL 233±171,PB 280±255)大于站立状态下的(PL 164±131,PB 193±137,P<0.05)。两种状态之间的差异表明,与传统的站立模型相比,行走模型中对踝关节损伤机制的动态反应有很大不同。行走模型可能是评估因突然踝关节内翻导致的踝关节肌肉组织动态反应特性的一种更具功能性的方法。