Zapilko Clemens, Widenmeyer Markus, Nagl Iris, Estler Frank, Anwander Reiner, Raudaschl-Sieber Gabriele, Groeger Olaf, Engelhardt Günter
Kjemisk Institutt, Universitetet i Bergen, N-5007 Bergen, Allegatén 41, Norway.
J Am Chem Soc. 2006 Dec 20;128(50):16266-76. doi: 10.1021/ja065444v.
The surface reactions of mesoporous silica MCM-41 with a series of new trisilylamines (trisilazanes) (SiHMe2)2NSiMe2R and (SiMe2Vin)2NSiMe2R (R = indenyl, norpinanyl, chloropropyl, 3-(N-morpholin)propyl; Vin = vinyl), disilylalkylamine (SiHMe2)iPrNSiMe2(CH2)3Cl, and monosilyldialkylamines Me2NSiMe2R (R = indenyl, chloropropyl, 3-(N-morpholin)propyl) were investigated. 1H, 13C, and 29Si MAS NMR spectroscopy, nitrogen adsorption/desorption, infrared spectroscopy, and model reactions with calix[4]arene as a mimic for an oxo surface were used to clarify the chemical nature of surface-bonded silyl groups. The trisilylamines exhibited a comparatively slow surface reaction, which allowed for the adjustment of the amount of silylated and nonreacted SiOH groups and led to a stoichiometric distribution of surface functionalities. The 2:1 integral ratio of SiHMe2 and SiMe2R moieties of such trisilazanes was found to be preserved on the silica surface as indicated by microanalytical as well as 13C and 29Si MAS NMR spectroscopic data of the hybrid materials. For example, the reaction of MCM-41 with (SiHMe2)2NSiMe2(CH2)3Cl, (SiHMe2)iPrNSiMe2(CH2)3Cl, and Me2NSiMe2(CH2)3Cl provided bi- and monofunctional hybrid materials with one-third, one-half, or all chemically accessible silanol groups derivatized by chloropropyl groups, respectively. Thus, a molecular precursor strategy was developed to efficiently control the relative amount of three different surface species, SiHMe2 (or SiVinMe2), SiMe2R, and SiOH, in a single reaction step. The reaction behavior of indenyl-substituted monosilazanes and trisilazanes (R = Ind) with calix[4]arene proved that the indenyl substituent can act as a leaving group forming a dimethylsilyl species, which is anchored bipodally on the silica surface, that is, via two Si-O bonds.
研究了介孔二氧化硅MCM - 41与一系列新型三硅胺(三硅氮烷)(SiHMe2)2NSiMe2R和(SiMe2Vin)2NSiMe2R(R = 茚基、降冰片基、氯丙基、3-(N - 吗啉基)丙基;Vin = 乙烯基)、二硅烷基烷基胺(SiHMe2)iPrNSiMe2(CH2)3Cl以及单硅烷基二烷基胺Me2NSiMe2R(R = 茚基、氯丙基、3-(N - 吗啉基)丙基)的表面反应。采用1H、13C和29Si MAS NMR光谱、氮气吸附/脱附、红外光谱以及以杯[4]芳烃作为氧表面模拟物的模型反应来阐明表面键合硅烷基团的化学性质。三硅胺表现出相对较慢的表面反应,这使得能够调节硅烷化和未反应的SiOH基团的数量,并导致表面官能团的化学计量分布。如杂化材料的微量分析以及碳 - 13和硅 - 29 MAS NMR光谱数据所示,此类三硅氮烷中SiHMe2和SiMe2R部分的2:1积分比在二氧化硅表面得以保留。例如,MCM - 41与(SiHMe2)2NSiMe2(CH2)3Cl、(SiHMe2)iPrNSiMe2(CH2)3Cl和Me2NSiMe2(CH2)3Cl的反应分别提供了双功能和单功能杂化材料,其中三分之一、二分之一或所有化学可及的硅醇基团分别被氯丙基衍生化。因此,开发了一种分子前驱体策略,以在单个反应步骤中有效控制三种不同表面物种SiHMe2(或SiVinMe2)、SiMe2R和SiOH的相对量。茚基取代的单硅氮烷和三硅氮烷(R = Ind)与杯[4]芳烃的反应行为证明,茚基取代基可作为离去基团形成二甲基硅烷基物种,该物种通过两个Si - O键以双足方式锚定在二氧化硅表面。