Saunders Aaron E, Popov Inna, Banin Uri
Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
J Phys Chem B. 2006 Dec 21;110(50):25421-9. doi: 10.1021/jp065594s.
We explore the growth mechanism of gold nanocrystals onto preformed cadmium sulfide nanorods to form hybrid metal nanocrystal/semiconductor nanorod colloids. By manipulating the growth conditions, it is possible to obtain nanostructures exhibiting Au nanocrystal growth at only one nanorod tip, at both tips, or at multiple locations along the nanorod surface. Under anaerobic conditions, Au growth occurs only at one tip of the nanorods, producing asymmetric structures. In contrast, the presence of oxygen and trace amounts of water during the reaction promotes etching of the nanorod surface, providing additional sites for metal deposition. Three growth stages are observed when Au growth is performed under air: (1) Au nanocrystal formation at both nanorod tips, (2) growth onto defect sites on the nanorod surface, and finally (3) a ripening process in which one nanocrystal tip grows at the expense of the other particles present on the nanorod. Analysis of the hybrid nanostructures by high-resolution TEM shows that there is no preferred orientation between the Au nanocrystal and the CdS nanorod, indicating that growth is nonepitaxial. The optical signatures of the nanocrystals and the nanorods (i.e., the surface plasmon and first exciton transition peaks, respectively) are spectrally distinct, allowing the different stages of the growth process to be easily monitored. The initial CdS nanorods exhibit band gap and trap state emission, both of which are quenched during Au growth.
我们探究了金纳米晶体在预制硫化镉纳米棒上的生长机制,以形成混合金属纳米晶体/半导体纳米棒胶体。通过控制生长条件,有可能获得在纳米棒的仅一个尖端、两个尖端或沿纳米棒表面的多个位置处呈现金纳米晶体生长的纳米结构。在厌氧条件下,金的生长仅发生在纳米棒的一个尖端,产生不对称结构。相比之下,反应过程中氧气和痕量水的存在促进了纳米棒表面的蚀刻,为金属沉积提供了额外的位点。当在空气中进行金的生长时,观察到三个生长阶段:(1)在纳米棒的两个尖端形成金纳米晶体;(2)在纳米棒表面的缺陷位点上生长;最后(3)一个成熟过程,其中一个纳米晶体尖端以纳米棒上存在的其他粒子为代价生长。通过高分辨率透射电子显微镜对混合纳米结构的分析表明,金纳米晶体和硫化镉纳米棒之间没有择优取向,这表明生长是非外延的。纳米晶体和纳米棒的光学特征(即分别为表面等离子体和第一激子跃迁峰)在光谱上是不同的,这使得生长过程的不同阶段能够被轻松监测。初始的硫化镉纳米棒表现出带隙和陷阱态发射,这两者在金生长过程中都会被淬灭。