Hower Jason C, He Yi, Bernards Matthew T, Jiang Shaoyi
Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA.
J Chem Phys. 2006 Dec 7;125(21):214704. doi: 10.1063/1.2397681.
This paper presents a molecular simulation study of the interactions of a protein (lysozyme) with self-assembled monolayers (SAMs) of mannitol and sorbitol terminated alkanethiols in the presence of explicit water molecules and ions. The all-atom simulations were performed to calculate the force generated on the protein as a function of its distance above the SAM surfaces. The structural and dynamic properties of water molecules both above the SAM surfaces and around the SAM head groups were analyzed to provide a better understanding of the nonfouling behavior of the sugar-based SAM surfaces. Results from this work suggest that both mannitol and sorbitol SAMs generate a tightly bound, structured water layer around the SAM chains. This hydration layer creates a repulsive force on the protein when it approaches the surface, resulting in a nonfouling surface despite the presence of hydrogen-bond donor groups. This work demonstrates the importance of strong surface-water interactions for surface resistance to nonspecific protein adsorption.
本文介绍了一项分子模拟研究,该研究针对在存在明确水分子和离子的情况下,蛋白质(溶菌酶)与甘露醇和山梨醇封端的烷硫醇自组装单分子层(SAMs)之间的相互作用。进行全原子模拟以计算蛋白质在SAM表面上方不同距离处产生的力。分析了SAM表面上方和SAM头部基团周围水分子的结构和动力学性质,以更好地理解基于糖的SAM表面的抗污行为。这项工作的结果表明,甘露醇和山梨醇SAMs在SAM链周围都会形成紧密结合的结构化水层。当蛋白质接近表面时,这个水合层会对蛋白质产生排斥力,尽管存在氢键供体基团,但仍会形成抗污表面。这项工作证明了强表面-水相互作用对于表面抗非特异性蛋白质吸附的重要性。