Suppr超能文献

已确定的人tRNA剪接内切核酸酶(Sen15)一个亚基的三维结构揭示了一种新型二聚体折叠。

Three-dimensional structure determined for a subunit of human tRNA splicing endonuclease (Sen15) reveals a novel dimeric fold.

作者信息

Song Jikui, Markley John L

机构信息

Center for Eukaryotic Structural Genomics, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544, USA.

出版信息

J Mol Biol. 2007 Feb 9;366(1):155-64. doi: 10.1016/j.jmb.2006.11.024. Epub 2006 Nov 11.

Abstract

Splicing of eukaryal intron-containing tRNAs requires the action of the heterotetrameric splicing endonuclease, which is composed of two catalytic subunits, Sen34 and Sen2, and two structural subunits, Sen15 and Sen54. Here we report the solution structure of the human tRNA splicing endonuclease subunit HsSen15. To facilitate the structure determination, we removed the disordered 35 N-terminal and 14 C-terminal residues of the full-length protein to produce HsSen15(36-157). The structure of HsSen15(36-157), the first for a subunit of a eukaryal splicing endonuclease, revealed that the protein possesses a novel homodimeric fold. Each monomer consists of three alpha-helices and a mixed antiparallel/parallel beta-sheet, arranged in a topology similar to that of the C-terminal domain of Methanocaldococcus jannaschii endonuclease. The dimeric interface is dominated by a beta-barrel structure, formed by face-to-face packing of two, three-stranded beta-sheets. Each of the beta-sheets results from reciprocal parallel pairing of one beta-strand from one subunit with two other beta-strands from the symmetric subunit. The structural model provides insights into the functional assembly of the human tRNA splicing endonuclease.

摘要

真核生物含内含子tRNA的剪接需要异源四聚体剪接内切核酸酶的作用,该酶由两个催化亚基Sen34和Sen2以及两个结构亚基Sen15和Sen54组成。在此,我们报道了人tRNA剪接内切核酸酶亚基HsSen15的溶液结构。为便于结构测定,我们去除了全长蛋白无序的35个N端和14个C端残基,以产生HsSen15(36 - 157)。HsSen15(36 - 157)的结构是真核生物剪接内切核酸酶亚基的首个结构,显示该蛋白具有一种新颖的同二聚体折叠。每个单体由三个α螺旋和一个混合的反平行/平行β折叠组成,其排列拓扑结构类似于嗜热栖热放线菌内切核酸酶C端结构域的拓扑结构。二聚体界面主要由一个β桶结构主导,该结构由两个三链β折叠面对面堆积形成。每个β折叠是由一个亚基的一条β链与对称亚基的另外两条β链相互平行配对形成的。该结构模型为深入了解人tRNA剪接内切核酸酶的功能组装提供了线索。

相似文献

1
Three-dimensional structure determined for a subunit of human tRNA splicing endonuclease (Sen15) reveals a novel dimeric fold.
J Mol Biol. 2007 Feb 9;366(1):155-64. doi: 10.1016/j.jmb.2006.11.024. Epub 2006 Nov 11.
2
Crystal structure of a dimeric archaeal splicing endonuclease.
J Mol Biol. 2000 Sep 22;302(3):639-48. doi: 10.1006/jmbi.2000.3941.
3
Cleavage of pre-tRNAs by the splicing endonuclease requires a composite active site.
Nature. 2006 May 18;441(7091):375-7. doi: 10.1038/nature04741.
4
A novel three-unit tRNA splicing endonuclease found in ultrasmall Archaea possesses broad substrate specificity.
Nucleic Acids Res. 2011 Dec;39(22):9695-704. doi: 10.1093/nar/gkr692. Epub 2011 Aug 31.
6
Crystal structure and assembly of the functional Nanoarchaeum equitans tRNA splicing endonuclease.
Nucleic Acids Res. 2009 Sep;37(17):5793-802. doi: 10.1093/nar/gkp537. Epub 2009 Jul 3.
7
A conserved lysine residue in the crenarchaea-specific loop is important for the crenarchaeal splicing endonuclease activity.
J Mol Biol. 2011 Jan 7;405(1):92-104. doi: 10.1016/j.jmb.2010.10.050. Epub 2010 Nov 2.
9
Structure determination of a truncated dimeric splicing endonuclease in pseudo-face-centered space group P2(1)2(1)2.
Acta Crystallogr D Biol Crystallogr. 2004 Mar;60(Pt 3):447-52. doi: 10.1107/S0907444903029482. Epub 2004 Feb 25.

引用本文的文献

1
Functional Insight into hTRIR.
Curr Mol Med. 2024;24(12):1445-1449. doi: 10.2174/0115665240260310231016112946.
2
Structural basis for pre-tRNA recognition and processing by the human tRNA splicing endonuclease complex.
Nat Struct Mol Biol. 2023 Jun;30(6):824-833. doi: 10.1038/s41594-023-00991-z. Epub 2023 May 25.
3
Structural basis of substrate recognition by human tRNA splicing endonuclease TSEN.
Nat Struct Mol Biol. 2023 Jun;30(6):834-840. doi: 10.1038/s41594-023-00992-y. Epub 2023 May 25.
5
Recent insights into the structure, function, and regulation of the eukaryotic transfer RNA splicing endonuclease complex.
Wiley Interdiscip Rev RNA. 2022 Sep;13(5):e1717. doi: 10.1002/wrna.1717. Epub 2022 Feb 14.
8
Recent Insights Into the Structure, Function, and Evolution of the RNA-Splicing Endonucleases.
Front Genet. 2019 Feb 12;10:103. doi: 10.3389/fgene.2019.00103. eCollection 2019.
10
tRNA gene diversity in the three domains of life.
Front Genet. 2014 May 26;5:142. doi: 10.3389/fgene.2014.00142. eCollection 2014.

本文引用的文献

1
2
Cleavage of pre-tRNAs by the splicing endonuclease requires a composite active site.
Nature. 2006 May 18;441(7091):375-7. doi: 10.1038/nature04741.
3
RNA recognition and cleavage by a splicing endonuclease.
Science. 2006 May 12;312(5775):906-10. doi: 10.1126/science.1126629.
4
The heteromeric Nanoarchaeum equitans splicing endonuclease cleaves noncanonical bulge-helix-bulge motifs of joined tRNA halves.
Proc Natl Acad Sci U S A. 2005 Dec 13;102(50):17934-9. doi: 10.1073/pnas.0509197102. Epub 2005 Dec 5.
5
Solution structure of isoform 1 of Roadblock/LC7, a light chain in the dynein complex.
J Mol Biol. 2005 Dec 16;354(5):1043-51. doi: 10.1016/j.jmb.2005.10.017. Epub 2005 Nov 2.
6
Coevolution of tRNA intron motifs and tRNA endonuclease architecture in Archaea.
Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15418-22. doi: 10.1073/pnas.0506750102. Epub 2005 Oct 12.
7
Structural characterization of the catalytic subunit of a novel RNA splicing endonuclease.
J Mol Biol. 2005 Nov 11;353(5):952-60. doi: 10.1016/j.jmb.2005.09.035. Epub 2005 Sep 30.
8
Structure, function, and evolution of the tRNA endonucleases of Archaea: an example of subfunctionalization.
Proc Natl Acad Sci U S A. 2005 Jun 21;102(25):8933-8. doi: 10.1073/pnas.0502350102. Epub 2005 Jun 3.
10
Production in two-liter beverage bottles of proteins for NMR structure determination labeled with either 15N- or 13C-15N.
J Struct Funct Genomics. 2004;5(1-2):87-93. doi: 10.1023/B:JSFG.0000029205.65813.42.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验