Eilertsen K J, Power R A, Harkins L L, Misica P
Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA.
Anim Reprod Sci. 2007 Mar;98(1-2):129-46. doi: 10.1016/j.anireprosci.2006.10.019. Epub 2006 Oct 21.
Successful cloning by somatic cell nuclear transfer (SCNT) is thought to require reprogramming of a somatic nucleus to a state of restored totipotentiality [Dean, W., Santos, F., Reik, W., 2003. Epigenetic programming in early mammalian development and following somatic cell nuclear transfer. Semin. Cell. Dev. Biol. 14, 93-100; Jouneau, A., Renard, J.P., 2003. Reprogramming in nuclear transfer. Curr. Opin. Genet. Dev. 13, 486-491; ]. Though SCNT-induced reprogramming is reminiscent of the reprogramming that occurs after fertilization, reprogramming a differentiated nucleus to an embryonic state is delayed and incomplete in comparison (for review, see ). This is likely due to the existence of an epigenetic-based cellular memory, or program, that serves to regulate global patterns of gene expression, and is the basis of a genome defense mechanism that silences viruses and transposons. The mechanisms of this memory include CpG methylation and modification of histones. Recent evidence by Feng et al. [Feng, Y.-Q., Desprat, R., Fu, H., Olivier, E., Lin, C.M., Lobell, A., Gowda, S.N., Aladjem, M.I., Bouhasira, E.E., 2006. DNA methylation supports intrinsic epigenetic memory in mammalian cells. PLOS Genet. 2, 0461-0470], using a transgenic experimental system, indicates that these marks may be acquired in more than one order and thus, silent heterochromatic structure can be initiated by either methylation of CpG dinucleotides or by histone modifications. In this system, however, CpG methylation appears to differ from histone modifications because it bestows a persistent epigenetic, or cellular, memory. In other words, CpG methylation can independently confer cellular memory, whereas histone modifications appear to be limited in this capacity. Therefore, in the context of genomic reprogramming induced by SCNT, efficient demethylation is likely a key (if not the only) rate-limiting step to improving the efficiency and outcomes of SCNT cloning. This review discusses the possibility of targeting cellular memory, and in particular inducing demethylation of a somatic nucleus prior to nuclear transfer, to enable reprogramming events typically carried out by oocyte factors and thereby improve developmental competence of SCNT-reconstructed embryos. Several recent published reviews of SCNT, cellular reprogramming and genomic demethylation served as valuable sources for the authors and are recommended as supplemental reading. These include the following: Bird, A., 2002. DNA methylation patterns and epigenetic memory. Gen. Dev. 16, 6-21; Grafi, G., 2004. How cells dedifferentiate: a lesson from plants. Dev. Biol. 268, 1-6; Latham, K.E., 2005. Early and delayed aspects of nuclear reprogramming during cloning. Biol. Cell 97, 119-132; Lyko, F., Brown, R., 2005. DNA methyltransferase inhibitors and the development of epigenetic cancer therapies. J.Natl. Cancer Inst. 97, 1498-1506; Morgan, H.D., Santos, F., Green, K., Dean, W., Reik, W., 2005. Epigenetic reprogramming in mammals. Hum. Mol. Gen. 14, R47-R58; Szyf, M., 2005. DNA methylation and demethylation as targets for anticancer therapy. Biochemistry 70, 533-549; Buszczak, M., Spradling, A.C., 2006. Searching chromatin for stem cell identity. Cell 125, 233-236; Gurdon, J.B., 2006. From nuclear transfer to nuclear reprogramming: the reversal of cell differentiation. Annu. Rev. Cell. Dev. Biol. 22, 1-22; Yoo, C.B., Jones, P.A., 2006. Epigenetic therapy of cancer: past, present and future. Nat. Rev. 5, 37-50.
通过体细胞核移植(SCNT)成功克隆被认为需要将体细胞核重新编程至恢复全能性的状态[迪恩,W.,桑托斯,F.,雷克,W.,2003年。早期哺乳动物发育及体细胞核移植后的表观遗传编程。《细胞与发育生物学研讨》14,93 - 100;朱诺,A.,勒纳尔,J.P.,2003年。核移植中的重编程。《遗传学与发育学当前观点》13,486 - 491;]。尽管SCNT诱导的重编程让人联想到受精后发生的重编程,但相比之下,将分化的细胞核重编程至胚胎状态是延迟且不完全的(综述见)。这可能是由于存在基于表观遗传的细胞记忆或程序,其用于调节基因表达的全局模式,并且是使病毒和转座子沉默的基因组防御机制的基础。这种记忆的机制包括CpG甲基化和组蛋白修饰。冯等人[冯,Y.-Q.,德斯普拉特,R.,傅,H.,奥利维耶,E.,林,C.M.,洛贝尔,A.,高达,S.N.,阿拉德杰姆,M.I.,布哈西拉,E.E.,2006年。DNA甲基化支持哺乳动物细胞中的内在表观遗传记忆。《公共科学图书馆·遗传学》2,0461 - 0470]最近利用转基因实验系统提供的证据表明,这些标记可能以不止一种顺序获得,因此,沉默的异染色质结构可以由CpG二核苷酸的甲基化或组蛋白修饰引发。然而,在这个系统中,CpG甲基化似乎与组蛋白修饰不同,因为它赋予了持久的表观遗传或细胞记忆。换句话说,CpG甲基化可以独立赋予细胞记忆,而组蛋白修饰在这种能力方面似乎受到限制。因此,在SCNT诱导的基因组重编程的背景下,有效的去甲基化可能是提高SCNT克隆效率和结果的关键(如果不是唯一的)限速步骤。本综述讨论了针对细胞记忆的可能性,特别是在核移植前诱导体细胞核去甲基化,以实现通常由卵母细胞因子进行的重编程事件,从而提高SCNT重构胚胎的发育能力。最近发表的几篇关于SCNT、细胞重编程和基因组去甲基化的综述是作者的宝贵资料来源,并推荐作为补充阅读。这些包括以下内容:伯德,A.,2002年。DNA甲基化模式与表观遗传记忆。《基因与发育》16,6 - 21;格拉菲,G.,2004年。细胞如何去分化:来自植物的一课。《发育生物学》268,1 - 6;莱瑟姆,K.E.,2005年。克隆过程中核重编程的早期和延迟方面。《生物细胞》97,119 - 132;利科,F.,布朗,R.,2005年。DNA甲基转移酶抑制剂与表观遗传癌症治疗的发展。《国家癌症研究所杂志》97,1498 - 1506;摩根,H.D.,桑托斯,F.,格林,K.,迪恩,W.,雷克,W.,2005年。哺乳动物中的表观遗传重编程。《人类分子遗传学》14,R47 - R58;齐夫,M.,2005年。DNA甲基化与去甲基化作为抗癌治疗的靶点。《生物化学》70,533 - 549;布兹扎克,M.,斯普拉德林,A.C.,2006年。在染色质中寻找干细胞身份。《细胞》125,233 - 236;古尔登,J.B.,2006年。从核移植到核重编程:细胞分化的逆转。《细胞与发育生物学年度评论》22,1 - 22;柳,C.B.,琼斯,P.A.,2006年。癌症的表观遗传治疗:过去、现在和未来。《自然评论》5,37 - 50。