Suppr超能文献

Neuronal-specific expression of human copper-zinc superoxide dismutase gene in transgenic mice: animal model of gene dosage effects in Down's syndrome.

作者信息

Ceballos-Picot I, Nicole A, Briand P, Grimber G, Delacourte A, Defossez A, Javoy-Agid F, Lafon M, Blouin J L, Sinet P M

机构信息

URA CNRS 1335, Laboratoire de Biochemie Génétique, Hôpital Necker-Enfants Malades, Paris, France.

出版信息

Brain Res. 1991 Jun 28;552(2):198-214. doi: 10.1016/0006-8993(91)90084-9.

Abstract

It has been suggested that copper-zinc superoxide dismutase (CuZn SOD) increment, by accelerating hydrogen peroxide formation, might promote oxidative damage within trisomy 21 cells and might be involved in the various neurobiological abnormalities found in Down's syndrome such as premature aging and Alzheimer-type neurological lesions. In order to test this hypothesis, we have developed strains of transgenic mice carrying the human CuZn SOD gene. The human transgene expression resulted in increased CuZn SOD activity predominantly in the brain (1.93 fold). Immunohistochemical and in situ hybridization analysis of brain sections revealed that human CuZn SOD protein and mRNA was preferentially expressed in neurons, particularly in pyramidal cells of Ammon's horn and granule cells of gyrus dentate. The amount of thiobarbituric acid (TBA)-reactive material was significantly higher in transgenic brains compared to controls, strongly suggesting an increased level of peroxidation in vivo. These results support the notion that CuZn SOD gene dosage effect could play a role in the pathogenesis of rapid aging features in the brain of Down's syndrome patients.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验