Suppr超能文献

从不协调交替期间相位反转的空间尺度推断电压和钙交替的细胞起源。

Inferring the cellular origin of voltage and calcium alternans from the spatial scales of phase reversal during discordant alternans.

作者信息

Sato Daisuke, Shiferaw Yohannes, Qu Zhilin, Garfinkel Alan, Weiss James N, Karma Alain

出版信息

Biophys J. 2007 Feb 15;92(4):L33-5. doi: 10.1529/biophysj.106.100982. Epub 2006 Dec 15.

Abstract

Beat-to-beat alternation of the action potential duration (APD) in paced cardiac cells has been linked to the onset of lethal arrhythmias. Both experimental and theoretical studies have shown that alternans at the single cell level can be caused by unstable membrane voltage (V(m)) dynamics linked to steep APD-restitution, or unstable intracellular calcium (Ca) cycling linked to high sensitivity of Ca release from the sarcoplasmic reticulum on sarcoplasmic reticulum Ca load. Identifying which of these two mechanisms is the primary cause of cellular alternans, however, has remained difficult since Ca and V(m) are bidirectionally coupled. Here, we use numerical simulations of a physiologically detailed ionic model to show that the origin of alternans can be inferred by measuring the length scales over which APD and Ca(i) alternans reverse phase during spatially discordant alternans. The main conclusion is that these scales are comparable to a few millimeters and equal when alternans is driven by APD restitution, but differ markedly when alternans is driven predominantly by unstable Ca cycling. In the latter case, APD alternans still reverses phase on a millimeter tissue scale due to electrotonic coupling, while Ca alternans reverses phase on a submillimeter cellular scale. These results show that experimentally accessible measurements of Ca(i) and V(m) in cardiac tissue can be used to shed light on the cellular origin of alternans.

摘要

在起搏的心脏细胞中,动作电位时程(APD)的逐搏交替与致死性心律失常的发生有关。实验和理论研究均表明,单细胞水平的交替现象可能由与陡峭的APD恢复相关的不稳定膜电压(V(m))动力学引起,或者由与肌浆网钙负荷时肌浆网钙释放的高敏感性相关的不稳定细胞内钙(Ca)循环引起。然而,由于Ca和V(m)是双向耦合的,确定这两种机制中哪一种是细胞交替现象的主要原因仍然很困难。在这里,我们使用一个生理细节离子模型的数值模拟来表明,通过测量在空间不协调交替现象期间APD和Ca(i)交替现象反相的长度尺度,可以推断交替现象的起源。主要结论是,当交替现象由APD恢复驱动时,这些尺度与几毫米相当且相等,但当交替现象主要由不稳定的钙循环驱动时,它们会有显著差异。在后一种情况下,由于电紧张耦合,APD交替现象在毫米级组织尺度上仍会反相,而Ca交替现象在亚毫米级细胞尺度上反相。这些结果表明,心脏组织中Ca(i)和V(m)的可实验测量值可用于阐明交替现象的细胞起源。

相似文献

2
Spatially discordant alternans in cardiac tissue: role of calcium cycling.
Circ Res. 2006 Sep 1;99(5):520-7. doi: 10.1161/01.RES.0000240542.03986.e7. Epub 2006 Aug 10.
3
The mechanisms of calcium cycling and action potential dynamics in cardiac alternans.
Circ Res. 2015 Feb 27;116(5):846-56. doi: 10.1161/CIRCRESAHA.116.305404. Epub 2014 Dec 22.
4
Spatially discordant alternans in cardiomyocyte monolayers.
Am J Physiol Heart Circ Physiol. 2008 Mar;294(3):H1417-25. doi: 10.1152/ajpheart.01233.2007. Epub 2008 Jan 25.
5
Dynamic origin of spatially discordant alternans in cardiac tissue.
Biophys J. 2007 Jan 15;92(2):448-60. doi: 10.1529/biophysj.106.091009. Epub 2006 Oct 27.
6
Molecular correlates of repolarization alternans in cardiac myocytes.
J Mol Cell Cardiol. 2005 Sep;39(3):419-28. doi: 10.1016/j.yjmcc.2005.06.004.
7
Cardiac alternans induced by fibroblast-myocyte coupling: mechanistic insights from computational models.
Am J Physiol Heart Circ Physiol. 2009 Aug;297(2):H775-84. doi: 10.1152/ajpheart.00341.2009. Epub 2009 May 29.
8
Action potential shortening rescues atrial calcium alternans.
J Physiol. 2019 Feb;597(3):723-740. doi: 10.1113/JP277188. Epub 2018 Dec 5.
9
Action potential duration restitution and alternans in rabbit ventricular myocytes: the key role of intracellular calcium cycling.
Circ Res. 2005 Mar 4;96(4):459-66. doi: 10.1161/01.RES.0000156891.66893.83. Epub 2005 Jan 20.
10
The role of short term memory and conduction velocity restitution in alternans formation.
J Theor Biol. 2015 Feb 21;367:21-28. doi: 10.1016/j.jtbi.2014.11.014. Epub 2014 Nov 27.

引用本文的文献

2
A model for cooperative gating of L-type Ca2+ channels and its effects on cardiac alternans dynamics.
PLoS Comput Biol. 2018 Jan 16;14(1):e1005906. doi: 10.1371/journal.pcbi.1005906. eCollection 2018 Jan.
3
Dynamical effects of calcium-sensitive potassium currents on voltage and calcium alternans.
J Physiol. 2017 Apr 1;595(7):2285-2297. doi: 10.1113/JP273626. Epub 2017 Jan 24.
4
Repolarization Alternans and Ventricular Arrhythmia in a Repaired Tetralogy of Fallot Animal Model.
J Am Heart Assoc. 2015 Dec 11;4(12):e002173. doi: 10.1161/JAHA.115.002173.
5
Spatiotemporal dynamics of calcium-driven cardiac alternans.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 May;89(5):052707. doi: 10.1103/PhysRevE.89.052707. Epub 2014 May 14.
6
Cardiac electrophysiological dynamics from the cellular level to the organ level.
Biomed Eng Comput Biol. 2013 Aug 26;5:69-75. doi: 10.4137/BECB.S10960. eCollection 2013.
7
Nonlinear and Stochastic Dynamics in the Heart.
Phys Rep. 2014 Oct 10;543(2):61-162. doi: 10.1016/j.physrep.2014.05.002.
8
Cellular mechanism of cardiac alternans: an unresolved chicken or egg problem.
J Zhejiang Univ Sci B. 2014 Mar;15(3):201-11. doi: 10.1631/jzus.B1300177.
9
Non-linear dynamics of cardiac alternans: subcellular to tissue-level mechanisms of arrhythmia.
Front Physiol. 2012 May 31;3:157. doi: 10.3389/fphys.2012.00157. eCollection 2012.
10
Cardiac cellular coupling and the spread of early instabilities in intracellular Ca2+.
Biophys J. 2012 Mar 21;102(6):1294-302. doi: 10.1016/j.bpj.2012.02.034. Epub 2012 Mar 20.

本文引用的文献

1
Spatially discordant alternans in cardiac tissue: role of calcium cycling.
Circ Res. 2006 Sep 1;99(5):520-7. doi: 10.1161/01.RES.0000240542.03986.e7. Epub 2006 Aug 10.
2
Sarcoplasmic reticulum calcium content fluctuation is the key to cardiac alternans.
Circ Res. 2004 Mar 19;94(5):650-6. doi: 10.1161/01.RES.0000119923.64774.72. Epub 2004 Jan 29.
3
Model of intracellular calcium cycling in ventricular myocytes.
Biophys J. 2003 Dec;85(6):3666-86. doi: 10.1016/S0006-3495(03)74784-5.
4
T-wave alternans for risk stratification and prevention of sudden cardiac death.
Curr Cardiol Rep. 2003 Sep;5(5):350-7. doi: 10.1007/s11886-003-0090-4.
5
Electrical alternans and spiral wave breakup in cardiac tissue.
Chaos. 1994 Sep;4(3):461-472. doi: 10.1063/1.166024.
6
Repolarization alternans: implications for the mechanism and prevention of sudden cardiac death.
Cardiovasc Res. 2003 Mar;57(3):599-614. doi: 10.1016/s0008-6363(02)00737-x.
7
Ionic mechanism of electrical alternans.
Am J Physiol Heart Circ Physiol. 2002 Feb;282(2):H516-30. doi: 10.1152/ajpheart.00612.2001.
8
Mechanisms for discordant alternans.
J Cardiovasc Electrophysiol. 2001 Feb;12(2):196-206. doi: 10.1046/j.1540-8167.2001.00196.x.
9
Integrative analysis of calcium cycling in cardiac muscle.
Circ Res. 2000 Dec 8;87(12):1087-94. doi: 10.1161/01.res.87.12.1087.
10
Mechanisms of discordant alternans and induction of reentry in simulated cardiac tissue.
Circulation. 2000 Oct 3;102(14):1664-70. doi: 10.1161/01.cir.102.14.1664.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验