Suppr超能文献

谷氨酸受体在远端树突上的定位取决于亚基组成和驱动蛋白KIF17。

Localization of glutamate receptors to distal dendrites depends on subunit composition and the kinesin motor protein KIF17.

作者信息

Kayadjanian N, Lee H S, Piña-Crespo J, Heinemann S F

机构信息

Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, PO Box 85800, La Jolla, CA 92186-5800, USA.

出版信息

Mol Cell Neurosci. 2007 Feb;34(2):219-30. doi: 10.1016/j.mcn.2006.11.001. Epub 2006 Dec 15.

Abstract

Correct glutamate receptor localization in neurons is crucial for neurotransmission in the brain. Here we investigated the mechanisms underlying localization of kainate GluR5 receptors to dendrites in cultured hippocampal neurons. We find that the GluR5 distribution depends on association with GluR6 and KA2 subunits. The GluR5 subunit was expressed in distal dendrites only when GluR6 and KA2 subunits were present, whereas it was restricted to proximal dendrites in the absence of these subunits. The overlap between GluR5 distribution and the organization of microtubules in dendrites led us to examine whether KIF17, a microtubule motor protein expressed in distal dendrites, is involved in GluR5 localization to distal dendrites. We show here, for the first time that the microtubule motor protein KIF17 interacts with GluR6 and KA2 subunits and is required for GluR5 localization to distal dendrites, defining a novel mechanism that controls receptor localization in neurons.

摘要

谷氨酸受体在神经元中的正确定位对于大脑中的神经传递至关重要。在此,我们研究了在培养的海马神经元中,红藻氨酸盐型GluR5受体定位于树突的潜在机制。我们发现,GluR5的分布取决于与GluR6和KA2亚基的结合。只有当GluR6和KA2亚基存在时,GluR5亚基才会在远端树突中表达,而在没有这些亚基时,它则局限于近端树突。GluR5分布与树突中微管组织之间的重叠使我们去研究KIF17(一种在远端树突中表达的微管运动蛋白)是否参与GluR5向远端树突的定位。我们在此首次表明,微管运动蛋白KIF17与GluR6和KA2亚基相互作用,并且是GluR5定位于远端树突所必需的,这确定了一种控制神经元中受体定位的新机制。

相似文献

1
Localization of glutamate receptors to distal dendrites depends on subunit composition and the kinesin motor protein KIF17.
Mol Cell Neurosci. 2007 Feb;34(2):219-30. doi: 10.1016/j.mcn.2006.11.001. Epub 2006 Dec 15.
2
Localization of kainate receptors at the cone pedicles of the primate retina.
J Comp Neurol. 2001 Aug 6;436(4):471-86. doi: 10.1002/cne.1081.
3
A mosaic of functional kainate receptors in hippocampal interneurons.
J Neurosci. 2004 Oct 13;24(41):8986-93. doi: 10.1523/JNEUROSCI.2156-04.2004.
4
Ligand binding is a critical requirement for plasma membrane expression of heteromeric kainate receptors.
J Biol Chem. 2005 Feb 18;280(7):6085-93. doi: 10.1074/jbc.M411549200. Epub 2004 Dec 6.
5
GluR5 and GluR6 kainate receptor subunits coexist in hippocampal neurons and coassemble to form functional receptors.
J Neurosci. 2000 Jan 1;20(1):196-205. doi: 10.1523/JNEUROSCI.20-01-00196.2000.
6
Synaptic expression of the high-affinity kainate receptor subunit KA2 in hippocampal cultures.
Neuroscience. 1995 Nov;69(2):383-93. doi: 10.1016/0306-4522(95)00253-f.
10
Localization of kainate receptor subunit GluR5-immunoreactive cells in the rat hypothalamus.
Brain Res Mol Brain Res. 2005 May 20;136(1-2):38-44. doi: 10.1016/j.molbrainres.2005.01.015. Epub 2005 Feb 24.

引用本文的文献

1
KIF17 Modulates Epileptic Seizures and Membrane Expression of the NMDA Receptor Subunit NR2B.
Neurosci Bull. 2022 Aug;38(8):841-856. doi: 10.1007/s12264-022-00888-9. Epub 2022 Jun 9.
3
ATF4 selectively regulates heat nociception and contributes to kinesin-mediated TRPM3 trafficking.
Nat Commun. 2021 Mar 3;12(1):1401. doi: 10.1038/s41467-021-21731-1.
4
Spatial control of membrane traffic in neuronal dendrites.
Mol Cell Neurosci. 2020 Jun;105:103492. doi: 10.1016/j.mcn.2020.103492. Epub 2020 Apr 12.
5
Intraflagellar transport velocity is governed by the number of active KIF17 and KIF3AB motors and their motility properties under load.
Proc Natl Acad Sci U S A. 2017 Aug 15;114(33):E6830-E6838. doi: 10.1073/pnas.1708157114. Epub 2017 Jul 31.
6
Mechanisms regulating dendritic arbor patterning.
Cell Mol Life Sci. 2017 Dec;74(24):4511-4537. doi: 10.1007/s00018-017-2588-8. Epub 2017 Jul 22.
7
Tc1 mouse model of trisomy-21 dissociates properties of short- and long-term recognition memory.
Neurobiol Learn Mem. 2016 Apr;130:118-28. doi: 10.1016/j.nlm.2016.02.002. Epub 2016 Feb 8.
8
Septin 9 interacts with kinesin KIF17 and interferes with the mechanism of NMDA receptor cargo binding and transport.
Mol Biol Cell. 2016 Mar 15;27(6):897-906. doi: 10.1091/mbc.E15-07-0493. Epub 2016 Jan 28.
9
Diversifying the secretory routes in neurons.
Front Neurosci. 2015 Oct 7;9:358. doi: 10.3389/fnins.2015.00358. eCollection 2015.

本文引用的文献

1
A C-terminal domain directs Kv3.3 channels to dendrites.
J Neurosci. 2005 Dec 14;25(50):11531-41. doi: 10.1523/JNEUROSCI.3672-05.2005.
2
Maternal transmission disequilibrium of the glutamate receptor GRIK2 in schizophrenia.
Neuroreport. 2004 Aug 26;15(12):1987-91. doi: 10.1097/00001756-200408260-00031.
3
Redistribution of GABAB(1) protein and atypical GABAB responses in GABAB(2)-deficient mice.
J Neurosci. 2004 Jul 7;24(27):6086-97. doi: 10.1523/JNEUROSCI.5635-03.2004.
4
Myosin-dependent transport in neurons.
J Neurobiol. 2004 Feb 5;58(2):164-74. doi: 10.1002/neu.10320.
5
Kainate receptors and synaptic transmission.
Prog Neurobiol. 2003 Aug;70(5):387-407. doi: 10.1016/s0301-0082(03)00122-9.
6
Distribution of kainate receptor subunits at hippocampal mossy fiber synapses.
J Neurosci. 2003 Sep 3;23(22):8013-9. doi: 10.1523/JNEUROSCI.23-22-08013.2003.
7
Assembly and cell surface expression of KA-2 subunit-containing kainate receptors.
J Neurochem. 2003 Sep;86(6):1414-27. doi: 10.1046/j.1471-4159.2003.01945.x.
8
Loss of kainate receptor-mediated heterosynaptic facilitation of mossy-fiber synapses in KA2-/- mice.
J Neurosci. 2003 Jan 15;23(2):422-9. doi: 10.1523/JNEUROSCI.23-02-00422.2003.
9
KIF17 dynamics and regulation of NR2B trafficking in hippocampal neurons.
J Neurosci. 2003 Jan 1;23(1):131-40. doi: 10.1523/JNEUROSCI.23-01-00131.2003.
10
Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites.
Nature. 2002 May 2;417(6884):83-7. doi: 10.1038/nature743.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验