Yu Shaoning, Fan Fenghui, Flores Samuel C, Mei Fang, Cheng Xiaodong
Sealy Center for Structural Biology, The University of Texas Medical Branch, Galveston, Texas 77555-1031, USA.
Biochemistry. 2006 Dec 26;45(51):15318-26. doi: 10.1021/bi061701x. Epub 2006 Dec 5.
Exchange proteins directly activated by cAMP (Epac) make up a family of cAMP binding domain-containing proteins that play important roles in mediating the effects of cAMP through the activation of downstream small GTPases, Ras-proximate proteins. To delineate the mechanism of Epac activation, we probed the conformation and structural dynamics of Epac using amide hydrogen-deuterium (H-D) exchange coupled with Fourier transform infrared spectroscopy (FT-IR) and structural modeling. Our studies show that unlike that of cAMP-dependent protein kinase (PKA), the classic intracellular cAMP receptor, binding of cAMP to Epac does not induce significant changes in overall secondary structure and structural dynamics, as measured by FT-IR and the rate of H-D exchange, respectively. These results suggest that Epac activation does not involve significant changes in the amount of exposed surface areas as in the case of PKA activation, and conformational changes induced by cAMP in Epac are most likely confined to small local regions. Homology modeling and comparative structural analyses of the CBDs of Epac and PKA lead us to propose a model of Epac activation. On the basis of our model, Epac activation by cAMP employs the same underlying structural principal utilized by PKA, although the detailed structural and conformational changes associated with Epac and PKA activation are significantly different. In addition, we predict that during Epac activation the first beta-strand of the switchboard switches its conformation to a alpha-helix, which folds back to the beta-barrel core of the CBD and interacts directly with cAMP to form the base of the cAMP-binding pocket.
环磷酸腺苷直接激活的交换蛋白(Epac)构成了一类含环磷酸腺苷结合结构域的蛋白家族,它们在通过激活下游小GTP酶(Ras近端蛋白)介导环磷酸腺苷的作用中发挥重要作用。为了阐明Epac激活的机制,我们使用酰胺氢-氘(H-D)交换结合傅里叶变换红外光谱(FT-IR)和结构建模来探究Epac的构象和结构动力学。我们的研究表明,与经典的细胞内环磷酸腺苷受体——环磷酸腺苷依赖性蛋白激酶(PKA)不同,分别通过FT-IR和H-D交换速率测量,环磷酸腺苷与Epac的结合不会诱导整体二级结构和结构动力学的显著变化。这些结果表明,Epac激活并不像PKA激活那样涉及暴露表面积的显著变化,并且环磷酸腺苷在Epac中诱导的构象变化很可能局限于小的局部区域。对Epac和PKA的环磷酸腺苷结合结构域(CBD)进行同源建模和比较结构分析,使我们提出了一个Epac激活模型。基于我们的模型,环磷酸腺苷对Epac的激活采用了与PKA相同的潜在结构原理,尽管与Epac和PKA激活相关的详细结构和构象变化有显著差异。此外,我们预测在Epac激活过程中,配电盘的第一条β链会将其构象转变为α螺旋,该α螺旋会折回到CBD的β桶核心,并直接与环磷酸腺苷相互作用形成环磷酸腺苷结合口袋的底部。