Suppr超能文献

通过氢氘交换傅里叶变换红外光谱和结构建模剖析Epac激活机制。

Dissecting the mechanism of Epac activation via hydrogen-deuterium exchange FT-IR and structural modeling.

作者信息

Yu Shaoning, Fan Fenghui, Flores Samuel C, Mei Fang, Cheng Xiaodong

机构信息

Sealy Center for Structural Biology, The University of Texas Medical Branch, Galveston, Texas 77555-1031, USA.

出版信息

Biochemistry. 2006 Dec 26;45(51):15318-26. doi: 10.1021/bi061701x. Epub 2006 Dec 5.

Abstract

Exchange proteins directly activated by cAMP (Epac) make up a family of cAMP binding domain-containing proteins that play important roles in mediating the effects of cAMP through the activation of downstream small GTPases, Ras-proximate proteins. To delineate the mechanism of Epac activation, we probed the conformation and structural dynamics of Epac using amide hydrogen-deuterium (H-D) exchange coupled with Fourier transform infrared spectroscopy (FT-IR) and structural modeling. Our studies show that unlike that of cAMP-dependent protein kinase (PKA), the classic intracellular cAMP receptor, binding of cAMP to Epac does not induce significant changes in overall secondary structure and structural dynamics, as measured by FT-IR and the rate of H-D exchange, respectively. These results suggest that Epac activation does not involve significant changes in the amount of exposed surface areas as in the case of PKA activation, and conformational changes induced by cAMP in Epac are most likely confined to small local regions. Homology modeling and comparative structural analyses of the CBDs of Epac and PKA lead us to propose a model of Epac activation. On the basis of our model, Epac activation by cAMP employs the same underlying structural principal utilized by PKA, although the detailed structural and conformational changes associated with Epac and PKA activation are significantly different. In addition, we predict that during Epac activation the first beta-strand of the switchboard switches its conformation to a alpha-helix, which folds back to the beta-barrel core of the CBD and interacts directly with cAMP to form the base of the cAMP-binding pocket.

摘要

环磷酸腺苷直接激活的交换蛋白(Epac)构成了一类含环磷酸腺苷结合结构域的蛋白家族,它们在通过激活下游小GTP酶(Ras近端蛋白)介导环磷酸腺苷的作用中发挥重要作用。为了阐明Epac激活的机制,我们使用酰胺氢-氘(H-D)交换结合傅里叶变换红外光谱(FT-IR)和结构建模来探究Epac的构象和结构动力学。我们的研究表明,与经典的细胞内环磷酸腺苷受体——环磷酸腺苷依赖性蛋白激酶(PKA)不同,分别通过FT-IR和H-D交换速率测量,环磷酸腺苷与Epac的结合不会诱导整体二级结构和结构动力学的显著变化。这些结果表明,Epac激活并不像PKA激活那样涉及暴露表面积的显著变化,并且环磷酸腺苷在Epac中诱导的构象变化很可能局限于小的局部区域。对Epac和PKA的环磷酸腺苷结合结构域(CBD)进行同源建模和比较结构分析,使我们提出了一个Epac激活模型。基于我们的模型,环磷酸腺苷对Epac的激活采用了与PKA相同的潜在结构原理,尽管与Epac和PKA激活相关的详细结构和构象变化有显著差异。此外,我们预测在Epac激活过程中,配电盘的第一条β链会将其构象转变为α螺旋,该α螺旋会折回到CBD的β桶核心,并直接与环磷酸腺苷相互作用形成环磷酸腺苷结合口袋的底部。

相似文献

1
Dissecting the mechanism of Epac activation via hydrogen-deuterium exchange FT-IR and structural modeling.
Biochemistry. 2006 Dec 26;45(51):15318-26. doi: 10.1021/bi061701x. Epub 2006 Dec 5.
2
Conformational analysis of Epac activation using amide hydrogen/deuterium exchange mass spectrometry.
J Biol Chem. 2007 Nov 2;282(44):32256-63. doi: 10.1074/jbc.M706231200. Epub 2007 Sep 4.
5
Dynamically driven ligand selectivity in cyclic nucleotide binding domains.
J Biol Chem. 2009 Aug 28;284(35):23682-96. doi: 10.1074/jbc.M109.011700. Epub 2009 Apr 29.
6
The auto-inhibitory role of the EPAC hinge helix as mapped by NMR.
PLoS One. 2012;7(11):e48707. doi: 10.1371/journal.pone.0048707. Epub 2012 Nov 21.
7
Cyclic AMP induces integrin-mediated cell adhesion through Epac and Rap1 upon stimulation of the beta 2-adrenergic receptor.
J Cell Biol. 2003 Feb 17;160(4):487-93. doi: 10.1083/jcb.200209105. Epub 2003 Feb 10.

引用本文的文献

1
Epac1 activation by cAMP regulates cellular SUMOylation and promotes the formation of biomolecular condensates.
Sci Adv. 2022 Apr 22;8(16):eabm2960. doi: 10.1126/sciadv.abm2960. Epub 2022 Apr 20.
3
Recent Advances in EPAC-Targeted Therapies: A Biophysical Perspective.
Cells. 2019 Nov 19;8(11):1462. doi: 10.3390/cells8111462.
4
Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development.
Physiol Rev. 2018 Apr 1;98(2):919-1053. doi: 10.1152/physrev.00025.2017.
5
Obtaining information about protein secondary structures in aqueous solution using Fourier transform IR spectroscopy.
Nat Protoc. 2015 Mar;10(3):382-96. doi: 10.1038/nprot.2015.024. Epub 2015 Feb 5.
6
Dynamics and flexibility of human aromatase probed by FTIR and time resolved fluorescence spectroscopy.
PLoS One. 2013 Dec 11;8(12):e82118. doi: 10.1371/journal.pone.0082118. eCollection 2013.
7
Recent advances in the discovery of small molecules targeting exchange proteins directly activated by cAMP (EPAC).
J Med Chem. 2014 May 8;57(9):3651-65. doi: 10.1021/jm401425e. Epub 2013 Nov 27.
8
Cyclic AMP sensor EPAC proteins and energy homeostasis.
Trends Endocrinol Metab. 2014 Feb;25(2):60-71. doi: 10.1016/j.tem.2013.10.004. Epub 2013 Nov 12.
9
Structural analyses of a constitutively active mutant of exchange protein directly activated by cAMP.
PLoS One. 2012;7(11):e49932. doi: 10.1371/journal.pone.0049932. Epub 2012 Nov 26.
10
Predicting protein ligand binding motions with the conformation explorer.
BMC Bioinformatics. 2011 Oct 27;12:417. doi: 10.1186/1471-2105-12-417.

本文引用的文献

1
Interplay between exchange protein directly activated by cAMP (Epac) and microtubule cytoskeleton.
Mol Biosyst. 2005 Oct;1(4):325-31. doi: 10.1039/b511267b. Epub 2005 Sep 26.
3
Structure of the cyclic-AMP-responsive exchange factor Epac2 in its auto-inhibited state.
Nature. 2006 Feb 2;439(7076):625-8. doi: 10.1038/nature04468.
4
The Database of Macromolecular Motions: new features added at the decade mark.
Nucleic Acids Res. 2006 Jan 1;34(Database issue):D296-301. doi: 10.1093/nar/gkj046.
5
Epac activation converts cAMP from a proliferative into a differentiation signal in PC12 cells.
Mol Biol Cell. 2005 Dec;16(12):5639-48. doi: 10.1091/mbc.e05-05-0432. Epub 2005 Oct 5.
6
PKA-dependent and PKA-independent pathways for cAMP-regulated exocytosis.
Physiol Rev. 2005 Oct;85(4):1303-42. doi: 10.1152/physrev.00001.2005.
8
Epac1 regulates integrity of endothelial cell junctions through VE-cadherin.
FEBS Lett. 2005 Sep 12;579(22):4966-72. doi: 10.1016/j.febslet.2005.07.080.
9
Crystal structure of a complex between the catalytic and regulatory (RIalpha) subunits of PKA.
Science. 2005 Feb 4;307(5710):690-6. doi: 10.1126/science.1104607.
10
The cAMP binding domain: an ancient signaling module.
Proc Natl Acad Sci U S A. 2005 Jan 4;102(1):45-50. doi: 10.1073/pnas.0408579102. Epub 2004 Dec 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验