Cifelli Christopher J, Ross A Catharine
Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
J Nutr. 2007 Jan;137(1):63-70. doi: 10.1093/jn/137.1.63.
The relation between vitamin A (VA) nutritional status and the metabolism of all-trans-retinoic acid (RA) is not well understood. In this study, we determined the tissue distribution and metabolism of a test dose of [(3)H]-RA in rats with graded, diet-dependent, differences in VA status. The design included 3 groups, designated VA-deficient, VA-marginal, and VA-adequate, with liver total retinol concentrations of 9.7, 35.7 and 359 nmol/g, respectively, (P < 0.05), and an additional group of VA-deficient rats treated with a single oral dose of retinyl palmitate (RP) 20 h before the injection of [(3)H]-RA. Plasma, liver, lung, and small intestines, collected 30 min after [(3)H]-RA, were analyzed for total (3)H, unmetabolized [(3)H]-RA, polar organic-phase metabolites of [(3)H]-RA, and aqueous phase [(3)H]-labeled metabolites. In all groups, [(3)H]-RA was rapidly removed from plasma and concentrated in the liver. VA deficiency did not prevent the oxidative metabolism of RA. Nevertheless, the quantity of [(3)H]-RA metabolites in plasma and the ratio of total [(3)H]-polar metabolites to unmetabolized [(3)H]-RA in liver varied directly with VA status (VA-adequate > VA-marginal > VA-deficient, P < 0.05). Moreover, supplementation of VA-deficient rats with RP reduced the metabolism of [(3)H]-RA, similar to that in VA-adequate or VA-marginal rats. Liver retinol concentration, considered a proxy for VA status, was correlated (P < 0.05) with [(3)H]-RA metabolites in liver (R(2) = 0.54), plasma (R(2) = 0.44), lung (R(2) = 0.40), intestine (R(2) = 0.62), and all combined (R(2) = 0.655). Overall, the results demonstrate close linkage between dietary VA intake, hepatic storage of VA, and the degradation of RA and suggest that measuring plasma retinoid metabolites after a dose of RA may provide insight into the metabolism of this bioactive retinoid by visceral organs.
维生素A(VA)营养状况与全反式维甲酸(RA)代谢之间的关系尚未完全明确。在本研究中,我们测定了给予不同剂量、与饮食相关、VA状态不同的大鼠试验剂量的[³H]-RA后的组织分布及代谢情况。实验设计包括3组,分别为VA缺乏组、VA边缘缺乏组和VA充足组,肝脏总视黄醇浓度分别为9.7、35.7和359 nmol/g(P<0.05),另外还有一组VA缺乏大鼠,在注射[³H]-RA前20小时给予单次口服棕榈酸视黄酯(RP)。注射[³H]-RA 30分钟后收集的血浆、肝脏、肺和小肠,分析其中的总³H、未代谢的[³H]-RA、[³H]-RA的极性有机相代谢产物以及水相[³H]标记代谢产物。在所有组中,[³H]-RA均迅速从血浆中清除并在肝脏中富集。VA缺乏并不妨碍RA的氧化代谢。然而,血浆中[³H]-RA代谢产物的量以及肝脏中总[³H]-极性代谢产物与未代谢的[³H]-RA的比值与VA状态直接相关(VA充足组>VA边缘缺乏组>VA缺乏组,P<0.05)。此外,给VA缺乏大鼠补充RP可降低[³H]-RA的代谢,与VA充足或VA边缘缺乏大鼠相似。肝脏视黄醇浓度被视为VA状态的指标,与肝脏(R² = 0.54)、血浆(R² = 0.44)、肺(R² = 0.40)、肠道(R² = 0.62)以及所有组织总和(R² = 0.655)中的[³H]-RA代谢产物相关(P<0.05)。总体而言,结果表明饮食中VA摄入量、肝脏VA储存量与RA降解之间存在紧密联系,并表明在给予一定剂量RA后测量血浆类视黄醇代谢产物可能有助于了解内脏器官对这种生物活性类视黄醇的代谢情况。