Chen Y, Aranovich G L, Donohue M D
Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.
J Colloid Interface Sci. 2007 Mar 1;307(1):34-9. doi: 10.1016/j.jcis.2006.11.003. Epub 2006 Nov 6.
Liquid-vapor density profiles are derived from the equilibrium limit of diffusion equation for interacting particles. These profiles are in good agreement with classical hyperbolic tangent relation. For simple Lennard-Jones fluids, predicted density distributions agree with computer simulation data, but have a slightly sharper transition zone. For alkali metals with Lennard-Jones-like potentials, the new equations predict a very good average distribution with quite satisfactory agreement with Monte Carlo simulation results. For liquid metals and water surfaces, accurate interfacial profile predictions also can be achieved by using effective two-body potential data instead of Lennard-Jones parameters.
液-气密度分布是从相互作用粒子扩散方程的平衡极限推导出来的。这些分布与经典的双曲正切关系非常吻合。对于简单的 Lennard-Jones 流体,预测的密度分布与计算机模拟数据相符,但过渡区稍陡。对于具有类 Lennard-Jones 势的碱金属,新方程预测的平均分布非常好,与蒙特卡罗模拟结果的吻合度相当令人满意。对于液态金属和水表面,通过使用有效的两体势数据而非 Lennard-Jones 参数,也可以实现准确的界面分布预测。