Suppr超能文献

生物学中的高性能计算:纳米级系统的数百万原子模拟。

High performance computing in biology: multimillion atom simulations of nanoscale systems.

作者信息

Sanbonmatsu K Y, Tung C-S

机构信息

Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, MS K710, Los Alamos, NM 87545, USA.

出版信息

J Struct Biol. 2007 Mar;157(3):470-80. doi: 10.1016/j.jsb.2006.10.023. Epub 2006 Nov 10.

Abstract

Computational methods have been used in biology for sequence analysis (bioinformatics), all-atom simulation (molecular dynamics and quantum calculations), and more recently for modeling biological networks (systems biology). Of these three techniques, all-atom simulation is currently the most computationally demanding, in terms of compute load, communication speed, and memory load. Breakthroughs in electrostatic force calculation and dynamic load balancing have enabled molecular dynamics simulations of large biomolecular complexes. Here, we report simulation results for the ribosome, using approximately 2.64 million atoms, the largest all-atom biomolecular simulation published to date. Several other nano-scale systems with different numbers of atoms were studied to measure the performance of the NAMD molecular dynamics simulation program on the Los Alamos National Laboratory Q Machine. We demonstrate that multimillion atom systems represent a 'sweet spot' for the NAMD code on large supercomputers. NAMD displays an unprecedented 85% parallel scaling efficiency for the ribosome system on 1024 CPUs. We also review recent targeted molecular dynamics simulations of the ribosome that prove useful for studying conformational changes of this large biomolecular complex in atomic detail.

摘要

计算方法已在生物学中用于序列分析(生物信息学)、全原子模拟(分子动力学和量子计算),最近还用于生物网络建模(系统生物学)。在这三种技术中,就计算负载、通信速度和内存负载而言,全原子模拟目前对计算的要求最高。静电力计算和动态负载平衡方面的突破使得对大型生物分子复合物进行分子动力学模拟成为可能。在此,我们报告了对核糖体的模拟结果,该模拟使用了约264万个原子,是迄今为止发表的最大规模的全原子生物分子模拟。我们还研究了其他几个具有不同原子数的纳米级系统,以衡量NAMD分子动力学模拟程序在洛斯阿拉莫斯国家实验室的Q机上的性能。我们证明,数百万原子的系统对于大型超级计算机上的NAMD代码来说是一个“最佳点”。对于核糖体系统,NAMD在1024个CPU上显示出前所未有的85%的并行缩放效率。我们还回顾了最近针对核糖体的靶向分子动力学模拟,这些模拟被证明有助于在原子细节上研究这种大型生物分子复合物的构象变化。

相似文献

1
High performance computing in biology: multimillion atom simulations of nanoscale systems.
J Struct Biol. 2007 Mar;157(3):470-80. doi: 10.1016/j.jsb.2006.10.023. Epub 2006 Nov 10.
2
Scalable Molecular Dynamics with NAMD on the Summit System.
IBM J Res Dev. 2018 Nov-Dec;62(6):1-9. doi: 10.1147/jrd.2018.2888986. Epub 2018 Dec 21.
3
Scaling of Multimillion-Atom Biological Molecular Dynamics Simulation on a Petascale Supercomputer.
J Chem Theory Comput. 2009 Oct 13;5(10):2798-808. doi: 10.1021/ct900292r.
4
Coarse-grained models to study dynamics of nanoscale biomolecules and their applications to the ribosome.
J Phys Condens Matter. 2010 Nov 17;22(45):453101. doi: 10.1088/0953-8984/22/45/453101. Epub 2010 Oct 28.
5
Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
J Phys Condens Matter. 2008 Feb 13;20(6):060301. doi: 10.1088/0953-8984/20/06/060301. Epub 2008 Jan 24.
6
Multiple program/multiple data molecular dynamics method with multiple time step integrator for large biological systems.
J Comput Chem. 2017 Jun 15;38(16):1410-1418. doi: 10.1002/jcc.24511. Epub 2016 Oct 6.
8
Ribosome builder: a software project to simulate the ribosome.
Comput Biol Chem. 2005 Apr;29(2):163-74. doi: 10.1016/j.compbiolchem.2005.01.001.

引用本文的文献

1
Molecular dynamics simulations reveal the selectivity mechanism of structurally similar agonists to TLR7 and TLR8.
PLoS One. 2022 Apr 22;17(4):e0260565. doi: 10.1371/journal.pone.0260565. eCollection 2022.
2
Elastic versus brittle mechanical responses predicted for dimeric cadherin complexes.
Biophys J. 2022 Mar 15;121(6):1013-1028. doi: 10.1016/j.bpj.2022.02.007. Epub 2022 Feb 11.
3
Collective mechanical responses of cadherin-based adhesive junctions as predicted by simulations.
Biophys J. 2022 Mar 15;121(6):991-1012. doi: 10.1016/j.bpj.2022.02.008. Epub 2022 Feb 10.
4
Computer Simulations of Deep Eutectic Solvents: Challenges, Solutions, and Perspectives.
Int J Mol Sci. 2022 Jan 7;23(2):645. doi: 10.3390/ijms23020645.
6
Elucidating the fundamental forces in protein crystal formation: the case of crambin.
Chem Sci. 2016 Feb 1;7(2):1496-1507. doi: 10.1039/c5sc03447g. Epub 2015 Nov 24.
7
RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview.
Chem Rev. 2018 Apr 25;118(8):4177-4338. doi: 10.1021/acs.chemrev.7b00427. Epub 2018 Jan 3.
10

本文引用的文献

1
Molecular dynamics simulations of the complete satellite tobacco mosaic virus.
Structure. 2006 Mar;14(3):437-49. doi: 10.1016/j.str.2005.11.014.
2
Molecular dynamics simulations of sarcin-ricin rRNA motif.
Nucleic Acids Res. 2006 Feb 2;34(2):697-708. doi: 10.1093/nar/gkj470. Print 2006.
3
Simulating movement of tRNA into the ribosome during decoding.
Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):15854-9. doi: 10.1073/pnas.0503456102. Epub 2005 Oct 25.
4
GROMACS: fast, flexible, and free.
J Comput Chem. 2005 Dec;26(16):1701-18. doi: 10.1002/jcc.20291.
5
Exploring global motions and correlations in the ribosome.
Biophys J. 2005 Sep;89(3):1455-63. doi: 10.1529/biophysj.104.058495. Epub 2005 Jun 10.
6
Force probe molecular dynamics simulations.
Methods Mol Biol. 2005;305:493-515. doi: 10.1007/978-1-59259-912-7_23.
7
Does water play a structural role in the folding of small nucleic acids?
Biophys J. 2005 Apr;88(4):2516-24. doi: 10.1529/biophysj.104.055087. Epub 2005 Jan 28.
8
Mechanically induced titin kinase activation studied by force-probe molecular dynamics simulations.
Biophys J. 2005 Feb;88(2):790-804. doi: 10.1529/biophysj.104.052423. Epub 2004 Nov 5.
9
Atomic model of the Thermus thermophilus 70S ribosome developed in silico.
Biophys J. 2004 Oct;87(4):2714-22. doi: 10.1529/biophysj.104.040162.
10
The molecular basis of electroporation.
BMC Biochem. 2004 Jul 19;5:10. doi: 10.1186/1471-2091-5-10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验