Sanbonmatsu K Y, Tung C-S
Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, MS K710, Los Alamos, NM 87545, USA.
J Struct Biol. 2007 Mar;157(3):470-80. doi: 10.1016/j.jsb.2006.10.023. Epub 2006 Nov 10.
Computational methods have been used in biology for sequence analysis (bioinformatics), all-atom simulation (molecular dynamics and quantum calculations), and more recently for modeling biological networks (systems biology). Of these three techniques, all-atom simulation is currently the most computationally demanding, in terms of compute load, communication speed, and memory load. Breakthroughs in electrostatic force calculation and dynamic load balancing have enabled molecular dynamics simulations of large biomolecular complexes. Here, we report simulation results for the ribosome, using approximately 2.64 million atoms, the largest all-atom biomolecular simulation published to date. Several other nano-scale systems with different numbers of atoms were studied to measure the performance of the NAMD molecular dynamics simulation program on the Los Alamos National Laboratory Q Machine. We demonstrate that multimillion atom systems represent a 'sweet spot' for the NAMD code on large supercomputers. NAMD displays an unprecedented 85% parallel scaling efficiency for the ribosome system on 1024 CPUs. We also review recent targeted molecular dynamics simulations of the ribosome that prove useful for studying conformational changes of this large biomolecular complex in atomic detail.
计算方法已在生物学中用于序列分析(生物信息学)、全原子模拟(分子动力学和量子计算),最近还用于生物网络建模(系统生物学)。在这三种技术中,就计算负载、通信速度和内存负载而言,全原子模拟目前对计算的要求最高。静电力计算和动态负载平衡方面的突破使得对大型生物分子复合物进行分子动力学模拟成为可能。在此,我们报告了对核糖体的模拟结果,该模拟使用了约264万个原子,是迄今为止发表的最大规模的全原子生物分子模拟。我们还研究了其他几个具有不同原子数的纳米级系统,以衡量NAMD分子动力学模拟程序在洛斯阿拉莫斯国家实验室的Q机上的性能。我们证明,数百万原子的系统对于大型超级计算机上的NAMD代码来说是一个“最佳点”。对于核糖体系统,NAMD在1024个CPU上显示出前所未有的85%的并行缩放效率。我们还回顾了最近针对核糖体的靶向分子动力学模拟,这些模拟被证明有助于在原子细节上研究这种大型生物分子复合物的构象变化。