Ullrich C A
Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, USA.
J Chem Phys. 2006 Dec 21;125(23):234108. doi: 10.1063/1.2406069.
Most applications of time-dependent density-functional theory (TDDFT) use the adiabatic local-density approximation (ALDA) for the dynamical exchange-correlation potential V(xc)(r,t). An exact (i.e., nonadiabatic) extension of the ground-state LDA into the dynamical regime leads to a V(xc)(r,t) with a memory, which causes the electron dynamics to become dissipative. To illustrate and explain this nonadiabatic behavior, this paper studies the dynamics of two interacting electrons on a two-dimensional quantum strip of finite size, comparing TDDFT within and beyond the ALDA with numerical solutions of the two-electron time-dependent Schrodinger equation. It is shown explicitly how dissipation arises through multiple particle-hole excitations, and how the nonadiabatic extension of the ALDA fails for finite systems but becomes correct in the thermodynamic limit.
时变密度泛函理论(TDDFT)的大多数应用都采用绝热局域密度近似(ALDA)来处理动力学交换关联势V(xc)(r,t)。将基态LDA精确(即非绝热)地扩展到动力学领域会导致V(xc)(r,t)具有记忆效应,这使得电子动力学变得耗散。为了说明和解释这种非绝热行为,本文研究了有限尺寸二维量子条带上两个相互作用电子的动力学,将ALDA框架内外的TDDFT与两电子含时薛定谔方程的数值解进行了比较。文中明确展示了耗散是如何通过多个粒子-空穴激发产生的,以及ALDA的非绝热扩展在有限系统中如何失效,但在热力学极限下如何变得正确。