Suppr超能文献

用于皮肤镜检查的CASH(颜色、结构、对称性和同质性)算法。

The CASH (color, architecture, symmetry, and homogeneity) algorithm for dermoscopy.

作者信息

Henning J Scott, Dusza Stephen W, Wang Steven Q, Marghoob Ashfaq A, Rabinovitz Harold S, Polsky David, Kopf Alfred W

机构信息

Ronald O. Perelman Department of Dermatology, New York University School of Medicine and Sloan-Kettering Cancer Center, New York 10016, USA.

出版信息

J Am Acad Dermatol. 2007 Jan;56(1):45-52. doi: 10.1016/j.jaad.2006.09.003.

Abstract

BACKGROUND

The color, architecture, symmetry, and homogeneity (CASH) algorithm for dermoscopy includes a feature not used in prior algorithms, namely, architecture. Architectural order/disorder is derived from current concepts regarding the biology of benign versus malignant melanocytic neoplasms.

OBJECTIVE

We sought to evaluate the accuracy of the CASH algorithm.

METHODS

A total CASH score (TCS) was calculated for dermoscopic images of 325 melanocytic neoplasms. Sensitivity, specificity, diagnostic accuracy, and receiver operating characteristic curve analyses were performed by comparing the TCS with the histopathologic diagnoses for all lesions.

RESULTS

The mean TCS was 12.28 for melanoma, 7.62 for dysplastic nevi, and 5.24 for nondysplastic nevi. These differences were statistically significant (P < .001). A TCS of 8 or more yielded a sensitivity of 98% and specificity of 68% for the diagnosis of melanoma.

LIMITATIONS

This is a single-evaluator pilot study. Additional studies are needed to verify the CASH algorithm.

CONCLUSIONS

The CASH algorithm can distinguish melanoma from melanocytic nevi with sensitivity and specificity comparable with other algorithms. Further study is warranted to determine its intraobserver and interobserver correlations.

摘要

背景

皮肤镜检查的颜色、结构、对称性和均匀性(CASH)算法包含一项先前算法未使用的特征,即结构。结构的有序/无序源自当前关于良性与恶性黑素细胞肿瘤生物学的概念。

目的

我们试图评估CASH算法的准确性。

方法

计算了325例黑素细胞肿瘤皮肤镜图像的总CASH评分(TCS)。通过将TCS与所有病变的组织病理学诊断结果进行比较,进行了敏感性、特异性、诊断准确性和受试者工作特征曲线分析。

结果

黑色素瘤的平均TCS为12.28,发育异常痣为7.62,非发育异常痣为5.24。这些差异具有统计学意义(P <.001)。TCS为8或更高时,诊断黑色素瘤的敏感性为98%,特异性为68%。

局限性

这是一项单评估者的初步研究。需要进一步的研究来验证CASH算法。

结论

CASH算法能够将黑色素瘤与黑素细胞痣区分开来,其敏感性和特异性与其他算法相当。有必要进行进一步研究以确定其观察者内和观察者间的相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验