Mallamace Francesco, Broccio Matteo, Corsaro Carmelo, Faraone Antonio, Majolino Domenico, Venuti Valentina, Liu Li, Mou Chung-Yuan, Chen Sow-Hsin
Dipartimento di Fisica and Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Universitá di Messina, C. da Papardo, S. ta Sperone 31, 98166 Messina, Italy.
Proc Natl Acad Sci U S A. 2007 Jan 9;104(2):424-8. doi: 10.1073/pnas.0607138104. Epub 2006 Dec 27.
By confining water in a nanoporous structure so narrow that the liquid could not freeze, it is possible to study properties of this previously undescribed system well below its homogeneous nucleation temperature TH = 231 K. Using this trick, we were able to study, by means of a Fourier transform infrared spectroscopy, vibrational spectra (HOH bending and OH-stretching modes) of deeply supercooled water in the temperature range 183 < T < 273 K. We observed, upon decreasing temperature, the building up of a new population of hydrogen-bonded oscillators centered around 3,120 cm(-1), the contribution of which progressively dominates the spectra as one enters into the deeply supercooled regime. We determined that the fractional weight of this spectral component reaches 50% just at the temperature, TL approximately 225 K, where the confined water shows a fragile-to-strong dynamic cross-over phenomenon [Ito, K., Moynihan, C. T., Angell, C. A. (1999) Nature 398:492-494]. Furthermore, the fact that the corresponding OH stretching spectral peak position of the low-density-amorphous solid water occurs exactly at 3,120 cm(-1) [Sivakumar, T. C., Rice, S. A., Sceats, M. G. (1978) J. Chem. Phys. 69:3468-3476.] strongly suggests that these oscillators originate from existence of the low-density-liquid phase derived from the occurrence of the first-order liquid-liquid (LL) phase transition and the associated LL critical point in supercooled water proposed earlier by a computer molecular dynamics simulation [Poole, P. H., Sciortino, F., Essmann, U., Stanley, H. E. (1992) Nature 360:324-328].
通过将水限制在一种极窄的纳米多孔结构中,使得液体无法冻结,就有可能在远低于其均匀成核温度(T_H = 231K)的情况下研究这个此前未被描述过的系统的性质。利用这个技巧,我们能够借助傅里叶变换红外光谱法,研究温度范围在(183 < T < 273K)的深度过冷水的振动光谱((HOH)弯曲和(OH)伸缩模式)。我们观察到,随着温度降低,围绕(3120cm^{-1})形成了一群新的氢键振子,当进入深度过冷区域时,其贡献逐渐在光谱中占主导地位。我们确定,就在温度(T_L)约为(225K)时,这种光谱成分的分数权重达到(50%),此时受限水呈现出从脆弱到强烈的动力学转变现象[伊藤,K.,莫伊尼汉,C. T.,安吉尔,C. A.(1999年)《自然》398:492 - 494]。此外,低密度非晶态固体水相应的(OH)伸缩光谱峰位置恰好出现在(3120cm^{-1}) [西瓦库马尔,T. C.,赖斯,S. A.,斯西茨,M. G.(1978年)《化学物理杂志》69:3468 - 3476],这强烈表明这些振子源于一阶液 - 液((LL))相变以及计算机分子动力学模拟先前提出的过冷水中相关的(LL)临界点所产生的低密度液相的存在[普尔,P. H.,肖蒂诺,F.,埃斯曼,U.,斯坦利,H. E.(1992年)《自然》360:324 - 328]。