Suppr超能文献

肺表面活性物质单分子层的融化

The melting of pulmonary surfactant monolayers.

作者信息

Yan Wenfei, Biswas Samares C, Laderas Ted G, Hall Stephen B

机构信息

Department of Biochemistry, Oregon Health & Science University, Portland, OR 97239-3098, USA.

出版信息

J Appl Physiol (1985). 2007 May;102(5):1739-45. doi: 10.1152/japplphysiol.00948.2006. Epub 2006 Dec 28.

Abstract

Monomolecular films of phospholipids in the liquid-expanded (LE) phase after supercompression to high surface pressures (pi), well above the equilibrium surface pressure (pi(e)) at which fluid films collapse from the interface to form a three-dimensional bulk phase, and in the tilted-condensed (TC) phase both replicate the resistance to collapse that is characteristic of alveolar films in the lungs. To provide the basis for determining which film is present in the alveolus, we measured the melting characteristics of monolayers containing TC dipalmitoyl phosphatidylcholine (DPPC), as well as supercompressed 1-palmitoyl-2-oleoyl phosphatidylcholine and calf lung surfactant extract (CLSE). Films generated by appropriate manipulations on a captive bubble were heated from < or =27 degrees C to > or =60 degrees C at different constant pi above pi(e). DPPC showed the abrupt expansion expected for the TC-LE phase transition, followed by the contraction produced by collapse. Supercompressed CLSE showed no evidence of the TC-LE expansion, arguing that supercompression did not simply convert the mixed lipid film to TC DPPC. For both DPPC and CLSE, the melting point, taken as the temperature at which collapse began, increased at higher pi, in contrast to 1-palmitoyl-2-oleoyl phosphatidylcholine, for which higher pi produced collapse at lower temperatures. For pi between 50 and 65 mN/m, DPPC melted at 48-55 degrees C, well above the main transition for bilayers at 41 degrees C. At each pi, CLSE melted at temperatures >10 degrees C lower. The distinct melting points for TC DPPC and supercompressed CLSE provide the basis by which the nature of the alveolar film might be determined from the temperature-dependence of pulmonary mechanics.

摘要

在超压缩至高表面压力(πi)后处于液体扩张(LE)相的磷脂单分子膜,该压力远高于平衡表面压力(πi(e)),在平衡表面压力下流体膜会从界面坍塌形成三维体相;以及处于倾斜凝聚(TC)相的磷脂单分子膜,都重现了肺中肺泡膜特有的抗坍塌能力。为了确定肺泡中存在哪种膜,我们测量了含有TC二棕榈酰磷脂酰胆碱(DPPC)的单层膜以及超压缩的1-棕榈酰-2-油酰磷脂酰胆碱和小牛肺表面活性剂提取物(CLSE)的熔化特性。通过在俘获气泡上进行适当操作产生的膜,在高于πi(e)的不同恒定πi下从≤27℃加热到≥60℃。DPPC显示出TC-LE相变预期的突然膨胀,随后是坍塌产生的收缩。超压缩的CLSE没有显示出TC-LE膨胀的迹象,这表明超压缩并没有简单地将混合脂质膜转化为TC DPPC。对于DPPC和CLSE,熔点(定义为坍塌开始的温度)在较高的πi下升高,这与1-棕榈酰-2-油酰磷脂酰胆碱相反,对于后者,较高的πi会在较低温度下导致坍塌。对于π在50至65 mN/m之间,DPPC在48 - 55℃熔化,远高于双层膜在41℃的主要转变温度。在每个πi下,CLSE的熔化温度要低10℃以上。TC DPPC和超压缩CLSE的不同熔点为根据肺力学的温度依赖性确定肺泡膜的性质提供了依据。

相似文献

1
The melting of pulmonary surfactant monolayers.
J Appl Physiol (1985). 2007 May;102(5):1739-45. doi: 10.1152/japplphysiol.00948.2006. Epub 2006 Dec 28.
2
How does pulmonary surfactant reduce surface tension to very low values?
J Appl Physiol (1985). 2007 May;102(5):1733-4. doi: 10.1152/japplphysiol.00187.2007. Epub 2007 Feb 15.
3
Liquid-crystalline collapse of pulmonary surfactant monolayers.
Biophys J. 2003 Jun;84(6):3792-806. doi: 10.1016/S0006-3495(03)75107-8.
4
Metastability of a supercompressed fluid monolayer.
Biophys J. 2003 Nov;85(5):3048-57. doi: 10.1016/S0006-3495(03)74723-7.
5
Phase transitions in films of lung surfactant at the air-water interface.
Biophys J. 1998 Jun;74(6):2983-95. doi: 10.1016/S0006-3495(98)78005-1.
7
The collapse of monolayers containing pulmonary surfactant phospholipids is kinetically determined.
Biophys J. 2005 Jul;89(1):306-14. doi: 10.1529/biophysj.105.060947.
8
Combinations of fluorescently labeled pulmonary surfactant proteins SP-B and SP-C in phospholipid films.
Biophys J. 1997 Jun;72(6):2638-50. doi: 10.1016/S0006-3495(97)78907-0.
10
Content of dipalmitoyl phosphatidylcholine in lung surfactant: ramifications for surface activity.
Pediatr Res. 1996 May;39(5):805-11. doi: 10.1203/00006450-199605000-00010.

引用本文的文献

1
Comparative biophysical study of clinical surfactants using constrained drop surfactometry.
Am J Physiol Lung Cell Mol Physiol. 2024 Oct 1;327(4):L535-L546. doi: 10.1152/ajplung.00058.2024. Epub 2024 Aug 19.
3
Biophysical properties of tear film lipid layer II. Polymorphism of FAHFA.
Biophys J. 2022 Feb 1;121(3):451-458. doi: 10.1016/j.bpj.2021.12.034. Epub 2021 Dec 27.
4
The Molecular Apgar Score: A Key to Unlocking Evolutionary Principles.
Front Pediatr. 2017 Mar 20;5:45. doi: 10.3389/fped.2017.00045. eCollection 2017.
5
Phase Transitions in Dipalmitoylphosphatidylcholine Monolayers.
Langmuir. 2016 Aug 23;32(33):8501-6. doi: 10.1021/acs.langmuir.6b01482. Epub 2016 Aug 9.
6
Automated Droplet Manipulation Using Closed-Loop Axisymmetric Drop Shape Analysis.
Langmuir. 2016 May 17;32(19):4820-6. doi: 10.1021/acs.langmuir.6b01215. Epub 2016 May 9.
7
On the low surface tension of lung surfactant.
Langmuir. 2011 Jul 5;27(13):8351-8. doi: 10.1021/la201482n. Epub 2011 Jun 8.
8
Lamellar bodies form solid three-dimensional films at the respiratory air-liquid interface.
J Biol Chem. 2010 Sep 3;285(36):28174-82. doi: 10.1074/jbc.M110.106518. Epub 2010 Jun 17.
10
Environmental tobacco smoke effects on lung surfactant film organization.
Biochim Biophys Acta. 2009 Feb;1788(2):358-70. doi: 10.1016/j.bbamem.2008.11.021. Epub 2008 Dec 11.

本文引用的文献

1
Persistence of metastability after expansion of a supercompressed fluid monolayer.
Langmuir. 2004 Jun 8;20(12):4945-53. doi: 10.1021/la036150f.
2
Transformation diagrams for the collapse of a phospholipid monolayer.
Langmuir. 2004 Nov 9;20(23):10100-6. doi: 10.1021/la049081t.
3
Metastability of a supercompressed fluid monolayer.
Biophys J. 2003 Nov;85(5):3048-57. doi: 10.1016/S0006-3495(03)74723-7.
5
A rapid method of total lipid extraction and purification.
Can J Biochem Physiol. 1959 Aug;37(8):911-7. doi: 10.1139/o59-099.
6
Liquid-crystalline collapse of pulmonary surfactant monolayers.
Biophys J. 2003 Jun;84(6):3792-806. doi: 10.1016/S0006-3495(03)75107-8.
7
Effect of neutral lipids on coexisting phases in monolayers of pulmonary surfactant.
Biophys Chem. 2002 Dec 10;101-102:333-45. doi: 10.1016/s0301-4622(02)00191-6.
8
Rapid compression transforms interfacial monolayers of pulmonary surfactant.
Biophys J. 2001 Apr;80(4):1863-72. doi: 10.1016/S0006-3495(01)76156-5.
9
Persistence of phase coexistence in disaturated phosphatidylcholine monolayers at high surface pressures.
Biophys J. 1999 Dec;77(6):3134-43. doi: 10.1016/S0006-3495(99)77143-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验