Wang Xiao-Yan, Liu Bing, Mao Ning
Institute of Basic Medical Science, Acadecy of Military Medical Sciences, Beijing 100850, China.
Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2006 Dec;14(6):1248-52.
Mouse embryonic stem cells (ES cells) are pluripotent in that they can give rise to almost all the cell types in vitro and in vivo. Also, they can sustain self-renewal in vitro owing to symmetrical mitosis, i.e., only the cell number increases while the daughter cells remain pluripotent. Self-renewal and pluripotency of ES cells are under stringent regulation of several signaling pathways. Activation of either JAK-STAT3 or PI3K, the downstream cascade of gp130, can maintain the self-renewal of ES cells, while phosphorylation of another gp130-related branch, SHP2-Ras-ERK, drives the differentiation. BMP2/4-mediated signaling is capable of suppressing the differentiation of ES cells in collaboration with activated JAK-STAT3 under serum free culture conditions. Other signaling such as Wnt also contributes to the self-renewal of ES cells. Generally, the network, which is composed of various signaling pathways, modulates the self-renewal and differentiation of mouse ES cells precisely. This review focuses on the role of gp130 in proliferation of mouse ES cells including inhibitory effect of JAK-STAT3 pathway activation on differentiation of mouse ES cells, maintenance effect of PI3K pathway activation on self-renewal of ES cells, promotive effect of SHP-2-Ras-ERK pathway activation on differentiation of ES cells, and influence of other signaling pathways on self-renewal of mouse ES cells, including maintenance effect of BMP combination with LIF under serum free culture conditions on self-renewal of ES cells and promotive effect of Wnt pathway activation on self-renewal of ES cells.
Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2006-12
APMIS. 2005
J Cell Physiol. 2007-11