Yang Li-Ming, Hsu Feng-Lin, Chang Shwu-Fen, Cheng Juei-Tang, Hsu Ju-Yin, Hsu Chung-Yi, Liu Pan-Chun, Lin Shwu-Jiuan
Department of Medicinal Chemistry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
Phytochemistry. 2007 Feb;68(4):562-70. doi: 10.1016/j.phytochem.2006.11.021. Epub 2007 Jan 17.
Steviol (2) possesses a blood glucose-lowering property. In order to produce potentially more- or less-active, toxic, or inactive metabolites compared to steviol (2), its microbial metabolism was investigated. Incubation of 2 with the microorganisms Bacillus megaterium ATCC 14581, Mucor recurvatus MR 36, and Aspergillus niger BCRC 32720 yielded one new metabolite, ent-7alpha,11beta,13-trihydroxykaur-16-en-19-oic acid (7), together with four known related biotransformation products, ent-7alpha,13-dihydroxykaur-16-en-19-oic acid (3), ent-13-hydroxykaur-16-en-19-alpha-d-glucopyranosyl ester (4), ent-13,16beta,17-trihydroxykauran-19-oic acid (5), and ent-13-hydroxy-7-ketokaur-16-en-19-oic acid (6). The preliminary testing of antihyperglycemic effects showed that 5 was more potent than the parent compound (2). Thus, the microbial metabolism of steviol-16alpha,17-epoxide (8) with M. recurvatus MR 36 was continued to produce higher amounts of 5 for future study of its action mechanism. Preparative-scale fermentation of 8 yielded 5, ent-11alpha,13,16alpha,17-tetrahydroxykauran-19-oic acid (10), ent-1beta,17-dihydroxy-16-ketobeyeran-19-oic acid (11), and ent-7alpha,17-dihydroxy-16-ketobeyeran-19-oic acid (13), together with three new metabolites: ent-13,16beta-dihydroxykauran-17-acetoxy-19-oic acid (9), ent-11beta,13-dihydroxy-16beta,17-epoxykauran-19-oic acid (12), and ent-11beta,13,16beta,17-tetrahydroxykauran-19-oic acid (14). The structures of the compounds were fully elucidated using 1D and 2D NMR spectroscopic techniques, as well as HRFABMS. In addition, a GRE (glucocorticoid responsive element)-mediated luciferase reporter assay was used to initially screen the compounds 3-5, and 7 as glucocorticoid agonists. Compounds 4, 5 and 7 showed significant effects.
甜菊醇(2)具有降血糖特性。为了产生与甜菊醇(2)相比可能活性更高或更低、有毒或无活性的代谢物,对其微生物代谢进行了研究。将2与巨大芽孢杆菌ATCC 14581、弯孢毛霉MR 36和黑曲霉BCRC 32720进行培养,产生了一种新的代谢物,对映-7α,11β,13-三羟基贝壳杉-16-烯-19-酸(7),以及四种已知的相关生物转化产物,对映-7α,13-二羟基贝壳杉-16-烯-19-酸(3)、对映-13-羟基贝壳杉-16-烯-19-α-D-吡喃葡萄糖酯(4)、对映-13,16β,17-三羟基贝壳杉烷-19-酸(5)和对映-13-羟基-7-酮基贝壳杉-16-烯-19-酸(6)。抗高血糖作用的初步测试表明,5比母体化合物(2)更有效。因此,继续用弯孢毛霉MR 36对甜菊醇-16α,17-环氧化物(8)进行微生物代谢,以产生更高量的5,用于其作用机制的未来研究。8的制备规模发酵产生了5、对映-11α,13,16α,17-四羟基贝壳杉烷-19-酸(10)、对映-1β,17-二羟基-16-氧代贝壳杉烷-19-酸(11)和对映-7α,17-二羟基-16-氧代贝壳杉烷-19-酸(13),以及三种新的代谢物:对映-13,16β-二羟基贝壳杉烷-17-乙酰氧基-19-酸(9)、对映-11β,13-二羟基-16β,17-环氧贝壳杉烷-19-酸(12)和对映-11β,13,16β,17-四羟基贝壳杉烷-19-酸(14)。使用一维和二维核磁共振光谱技术以及高分辨快原子轰击质谱对这些化合物的结构进行了全面阐明。此外,使用糖皮质激素反应元件(GRE)介导的荧光素酶报告基因测定法初步筛选化合物3 - 5和7作为糖皮质激素激动剂。化合物4、5和7显示出显著效果。