Stukenborg George J, Wagner Douglas P, Harrell Frank E, Oliver M Norman, Heim Steven W, Price Amy L, Han Caroline Kim, Wolf Andrew M D, Connors Alfred F
University of Virginia School of Medicine, Department of Public Health Sciences, Charlottesville, VA 22908, USA.
J Clin Epidemiol. 2007 Feb;60(2):142-54. doi: 10.1016/j.jclinepi.2006.05.014. Epub 2006 Nov 13.
Hospital mortality outcomes for acute myocardial infarction (AMI) patients are a focus of quality improvement programs conducted by government agencies. AMI mortality risk-adjustment models using administrative data typically adjust for baseline differences in mortality risk with a limited set of common and definite comorbidities. In this study, we present an AMI mortality risk-adjustment model that adjusts for comorbid disease and for AMI severity using information from secondary diagnoses reported as present at admission for California hospital patients.
AMI patients were selected from California hospital administrative data for 1996 through 1999 according to criteria used by the California Hospital Outcomes Project Report on Heart Attack Outcomes, a state-mandated public report that compares hospital mortality outcomes. We compared results for the new model to two mortality risk-adjustment models used to assess hospital AMI mortality outcomes by the state of California, and to two other models used in prior research.
The model using present-at-admission diagnoses obtained substantially better discrimination between predicted survival and inpatient death than the other models we considered.
AMI mortality risk-adjustment methods can be meaningfully improved using present-at-admission diagnoses to identify comorbid disease and conditions related closely to AMI.
急性心肌梗死(AMI)患者的医院死亡率结果是政府机构开展的质量改进项目的重点。使用行政数据的AMI死亡率风险调整模型通常会根据一组有限的常见且明确的合并症来调整死亡率风险的基线差异。在本研究中,我们提出了一种AMI死亡率风险调整模型,该模型利用加利福尼亚州医院患者入院时报告的二级诊断信息,对合并症和AMI严重程度进行调整。
根据《加利福尼亚州医院心脏病发作结果项目报告》(一份州政府要求的比较医院死亡率结果的公开报告)所使用的标准,从1996年至1999年加利福尼亚州医院行政数据中选取AMI患者。我们将新模型的结果与加利福尼亚州用于评估医院AMI死亡率结果的两种死亡率风险调整模型以及先前研究中使用的另外两种模型进行了比较。
与我们考虑的其他模型相比,使用入院时诊断的模型在预测生存和住院死亡之间的区分度显著更好。
通过使用入院时诊断来识别合并症以及与AMI密切相关的情况,可以切实改进AMI死亡率风险调整方法。