De Vivo Marco, Ensing Bernd, Dal Peraro Matteo, Gomez German A, Christianson David W, Klein Michael L
Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, USA.
J Am Chem Soc. 2007 Jan 17;129(2):387-94. doi: 10.1021/ja066150c.
Recently, a novel metal Mg2+-dependent phosphatase activity has been discovered in the N-terminal domain of the soluble epoxide hydrolase (sEH), opening a new branch of fatty acid metabolism and providing an additional site for drug targeting. Importantly, the sEH N-terminal fold belongs to the haloacid dehalogenase (HAD) superfamily, which comprises a vast majority of phosphotransferases. Herein, we present the results of a computational study of the sEH phosphatase activity, which includes classical molecular dynamics (MD) simulations and mixed quantum mechanical/molecular mechanics (QM/MM) calculations. On the basis of experimental results, a two-step mechanism has been proposed and herein investigated: (1) phosphoenzyme intermediate formation and (2) phosphoenzyme intermediate hydrolysis. Building on our earlier work, we now provide a detailed description of the reaction mechanism for the whole catalytic cycle along with its free energy profile. The present computations suggest metaphosphate-like transition states for these phosphoryl transfers. They also reveal that the enzyme promotes water deprotonation and facilitates shuttling of protons via a metal-ligand connecting water bridge (WB). These WB-mediated proton shuttles are crucial for the activation of the solvent nucleophile and for the stabilization of the leaving group. Moreover, due to the conservation of structural features in the N-terminal catalytic site of sEH and other members of the HAD superfamily, we suggest a generalization of our findings to these other metal-dependent phosphatases.
最近,在可溶性环氧化物水解酶(sEH)的N端结构域中发现了一种新型的依赖金属Mg2+的磷酸酶活性,这开启了脂肪酸代谢的一个新分支,并为药物靶向提供了一个额外的位点。重要的是,sEH的N端折叠属于卤代酸脱卤酶(HAD)超家族,该超家族包含绝大多数磷酸转移酶。在此,我们展示了对sEH磷酸酶活性的计算研究结果,其中包括经典分子动力学(MD)模拟和量子力学/分子力学混合(QM/MM)计算。基于实验结果,提出并在此研究了一种两步机制:(1)磷酸酶中间体的形成和(2)磷酸酶中间体的水解。基于我们早期的工作,我们现在提供了整个催化循环反应机制及其自由能分布的详细描述。目前的计算表明这些磷酰基转移存在类偏磷酸的过渡态。它们还揭示了该酶促进水的去质子化,并通过金属 - 配体连接水桥(WB)促进质子穿梭。这些由WB介导的质子穿梭对于溶剂亲核试剂的活化和离去基团的稳定至关重要。此外,由于sEH的N端催化位点与HAD超家族其他成员的结构特征具有保守性,我们建议将我们的研究结果推广到其他依赖金属的磷酸酶。