Gabasch Harald, Knop-Gericke Axel, Schlögl Robert, Borasio Marta, Weilach Christian, Rupprechter Günther, Penner Simon, Jenewein Bernd, Hayek Konrad, Klötzer Bernhard
Institut für Physikalische Chemie, Universität Innsbruck, A-6020 Innsbruck, Austria.
Phys Chem Chem Phys. 2007 Jan 28;9(4):533-40. doi: 10.1039/b610719b. Epub 2006 Dec 14.
The reactivity of several Pd-O species toward CO oxidation was compared experimentally, making use of chemically, structurally and morphologically different model systems such as single-crystalline Pd(111) covered by adsorbed oxygen or a Pd(5)O(4) surface oxide layer, an oriented Pd(111) thin film on NiAl oxidized toward PdO(x) suboxide and silica-supported uniform Pd nanoparticles oxidized to PdO. The oxygen reactivity decreased with increasing oxidation state: O(ad) on metallic Pd(111) exhibited the highest reactivity and could be reduced within a few minutes already at 223 K, using low CO beam fluxes around 0.02 ML s(-1). The Pd(5)O(4) surface oxide on Pd(111) could be reacted by CO at a comparable rate above 330 K using the same low CO beam flux. The more deeply oxidized Pd(111) thin film supported on NiAl was already much less reactive, and reduction in 10(-6) mbar CO at T > 500 K led only to partial reduction toward PdO(x) suboxide, and the metallic state of Pd could not be re-established under these conditions. The fully oxidized PdO nanoparticles required even rougher reaction conditions such as 10 mbar CO for 15 min at 523 K in order to re-establish the metallic state. As a general explanation for the observed activity trends we propose kinetic long-range transport limitations for the formation of an extended, crystalline metal phase. These mass-transport limitations are not involved in the reduction of O(ad), and less demanding in case of the 2-D Pd(5)O(4) surface oxide conversion back to metallic Pd(111). They presumably become rate-limiting in the complex separation process from an extended 3-D bulk oxide state toward a well ordered 3-D metallic phase.
利用化学、结构和形态不同的模型系统,如被吸附氧覆盖的单晶Pd(111)或Pd(5)O(4)表面氧化层、在NiAl上氧化为PdO(x)低价氧化物的取向Pd(111)薄膜以及氧化为PdO的二氧化硅负载的均匀Pd纳米颗粒,通过实验比较了几种Pd-O物种对CO氧化的反应活性。氧反应活性随氧化态的增加而降低:金属Pd(111)上的O(ad)表现出最高的反应活性,在223 K时,使用约0.02 ML s(-1)的低CO束流通量,几分钟内即可被还原。使用相同的低CO束流通量,Pd(111)上的Pd(5)O(4)表面氧化物在330 K以上能以相当的速率与CO反应。负载在NiAl上的氧化程度更深的Pd(111)薄膜反应活性已经低得多,在T > 500 K的10(-6) mbar CO中还原仅导致向PdO(x)低价氧化物的部分还原,在这些条件下无法重新建立Pd的金属态。完全氧化的PdO纳米颗粒甚至需要更苛刻的反应条件,如在523 K下10 mbar CO中反应15分钟才能重新建立金属态。作为对观察到的活性趋势的一般解释,我们提出了形成扩展的结晶金属相的动力学远程传输限制。这些质量传输限制不涉及O(ad)的还原,在二维Pd(5)O(4)表面氧化物转化回金属Pd(111)的情况下要求较低。在从扩展的三维块状氧化物状态向有序的三维金属相的复杂分离过程中,它们可能成为速率限制因素。