Ben-Artzi Gil, Hel-Or Hagit, Hel-Or Yacov
Department of Mathematics, Bar-Ilan University, Ramat-Gan 52900, Israel.
IEEE Trans Pattern Anal Mach Intell. 2007 Mar;29(3):382-93. doi: 10.1109/TPAMI.2007.62.
In this paper, we introduce a family of filter kernels--the Gray-Code Kernels (GCK) and demonstrate their use in image analysis. Filtering an image with a sequence of Gray-Code Kernels is highly efficient and requires only two operations per pixel for each filter kernel, independent of the size or dimension of the kernel. We show that the family of kernels is large and includes the Walsh-Hadamard kernels, among others. The GCK can be used to approximate any desired kernel and, as such forms, a complete representation. The efficiency of computation using a sequence of GCK filters can be exploited for various real-time applications, such as, pattern detection, feature extraction, texture analysis, texture synthesis, and more.
在本文中,我们介绍了一族滤波器核——格雷码核(GCK),并展示了它们在图像分析中的应用。用一系列格雷码核对图像进行滤波非常高效,每个滤波器核在每个像素上仅需两次操作,与核的大小或维度无关。我们表明,这一族核很大,其中包括沃尔什 - 哈达玛核等。格雷码核可用于近似任何所需的核,因此构成了一种完整的表示。使用一系列格雷码核滤波器进行计算的效率可用于各种实时应用,如模式检测、特征提取、纹理分析、纹理合成等等。