Suppr超能文献

乳腺癌中的基因表达谱分析与临床结果

Gene expression profiling and clinical outcome in breast cancer.

作者信息

Bertucci François, Finetti Pascal, Cervera Nathalie, Maraninchi Dominique, Viens Patrice, Birnbaum Daniel

机构信息

Centre de Recherche en Cancérologie de Marseille, Oncologie Médicale, Oncologie Moléculaire, UMR599 Inserm-Institut Paoli-Calmettes, Université de la Méditerranée, Marseille, France.

出版信息

OMICS. 2006 Winter;10(4):429-43. doi: 10.1089/omi.2006.10.429.

Abstract

Pathologic and clinical heterogeneity of breast cancer reflects the poorly documented, complex, and combinatory molecular basis of the disease and is in part responsible for therapeutic failures. The DNA microarray technique allows the analysis of RNA expression of several thousands of genes simultaneously in a sample. There are multiple potential applications of the technique in cancer research. A number of recent studies have shown the promising role of gene expression profiling in breast cancer by identifying new prognostic subclasses unidentifiable by conventional parameters and new prognostic and/or predictive gene signatures, whose predictive impact is superior to conventional histoclinical prognostic factors. In this review we describe current use of DNA microarrays in the prognosis of breast cancer. We also discuss issues that need to be addressed in the near future to allow the method to reach its full potential.

摘要

乳腺癌的病理和临床异质性反映了该疾病记录不完善、复杂且组合的分子基础,部分导致了治疗失败。DNA微阵列技术可同时分析样本中数千个基因的RNA表达。该技术在癌症研究中有多种潜在应用。最近的一些研究表明,通过识别传统参数无法识别的新预后亚类以及新的预后和/或预测基因特征,基因表达谱在乳腺癌中具有前景广阔的作用,其预测影响优于传统组织临床预后因素。在本综述中,我们描述了DNA微阵列在乳腺癌预后中的当前应用。我们还讨论了在不久的将来需要解决的问题,以使该方法充分发挥其潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验